分析 (I)利用同角三角函数的关系消参数得出曲线C的普通方程,将M点坐标代入曲线C的方程即可判断点M与曲线C的位置关系;
(II)由|AB|=2|MB|,可知M为AB的中点,将直线l的参数方程代入曲线的方程则方程有两个互为相反数的实根,根据根与系数的关系求出l的斜率,得出l方程.
解答 解:(I)由$\left\{\begin{array}{l}x=2cosα\\ y=\sqrt{3}sinα\end{array}\right.$(α为参数)消α得:$\frac{x^2}{4}+\frac{y^2}{3}=1$,
将$M(\sqrt{2},\frac{3π}{4})$化成直角坐标得M(-1,1),∵$\frac{{{{(-1)}^2}}}{4}+$$\frac{1^2}{3}=\frac{7}{12}<1$,
故点M在曲线C内.
(Ⅱ)设直线l的参数方程为$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=1+tsinα}\end{array}\right.$(t为参数,α为l的倾斜角).
代入$\frac{x^2}{4}+\frac{y^2}{3}=1$得:(3+sin2α)t2+(8sinα-6cosα)t-5=0.
∵|AB|=2|MB|,∴M为AB的中点,即t1+t2=0.
∴8sinα-6cosα=0,∴tanα=$\frac{3}{4}$.
∴l的方程为:$y-1=\frac{3}{4}(x+1)$,即3x-4y+7=0.
点评 本题考查了参数方程与普通方程的转化,参数的几何意义,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{15}$ | B. | $\frac{1}{5}$ | C. | $\frac{12}{19}$ | D. | $\frac{3}{95}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{FD}$ | B. | $\overrightarrow{FC}$ | C. | $\overrightarrow{FE}$ | D. | $\overrightarrow{BE}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com