精英家教网 > 高中数学 > 题目详情
7.如图是用计算机随机模拟的方法估计概率的程序框图,则输出M的估计值为(  )
A.504B.1511C.1512D.2016

分析 由题意以及框图的作用,直接计算出结果.

解答 解:由题意以及程序框图可知,程序框图的功能是用模拟方法估计几何概型概率,
如图,M是点落在阴影六边形内的次数,
由当i>2016时,退出循环,
∴阴影六边形内的点的次数为M,总试验次数为2016,
所以要求的概率满足:$\frac{{S}_{阴影}}{{S}_{正方形}}$=$\frac{2×2-2×(\frac{1}{2}×1×1)}{2×2}$=$\frac{3}{4}$,
故M=$\frac{3}{4}$×2016=1512,
故选:C.

点评 本题考查程序框图的作用,考查计算、分析能力,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在一次问题抢答的游戏中,要求找出每个问题所列出的4个答案中的正确答案,其抢答者随意说出了一个问题的答案,则这个答案恰好是正确答案的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.一个口袋内装有3个红球和n个绿球,从中任取3个,若取出的3个球至少有1个是绿球的概率是$\frac{34}{35}$,则n=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,已知三棱锥P-ABC的底面是等腰直角三角形,且∠ACB=$\frac{π}{2}$,侧面PAB⊥底面ABC,AB=PA=PB=2.则这个三棱锥的三视图中标注的尺寸x,y,z分别是(  )
A.$\sqrt{3}$,1,$\sqrt{2}$B.$\sqrt{3}$,1,1C.2,1,$\sqrt{2}$D.2,1,1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知i是虚数单位,复数z=i+$\frac{1}{1-i}$,则复数$\overline z$的虚部是(  )
A.$-\frac{1}{2}$B.$\frac{3}{2}$C.$-\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系中,已知曲线C的参数方程方程为$\left\{\begin{array}{l}x=2cosα\\ y=\sqrt{3}sinα\end{array}$(α为参数),在极坐标系中,点M的极坐标为($\sqrt{2}$,$\frac{3}{4}$π).
(I)写出曲线C的普通方程并判断点M与曲线C的位置关系;
(Ⅱ)设直线l过点M且与曲线C交于A、B两点,若|AB|=2|MB|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z满足|2z-i|=2,则|z+2i|的最小值是(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,矩形ABCD中,AB=2,BC=4,点E、G分别为BC、DC中点,点F为EC中点,则矩形去掉阴影部分后,以BC为轴旋转一周所得的几何体的体积是$\frac{29π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为$\frac{1}{6}$.

查看答案和解析>>

同步练习册答案