精英家教网 > 高中数学 > 题目详情
11、函数f(x)=x2+bx+3满足f(2+x)=f(2-x),若f(m)<0,则f(m+2)与f(log2π)的大小关系是f(m+2)
f(log2π).
分析:根据题意先求出b的值,然后就知道抛物线与x 轴的交点,再根据f(m)<0可求出m的取值范围,然后比较m+2与log2π的范围即可.
解答:解:∵函数f(x)=x2+bx+3满足f(2+x)=f(2-x)
∴抛物线的对称轴为2
∴b=-4
∴f(x)=(x-3)(x-1)
即抛物线与x轴交于(1,0),(3,0)点
∵f(m)<0
∴1<m<3
∴3<m+2<5
∴f(m+2)>0
∵2<π<4
∴1<log2π<2
∴f(log2π)<0
f(m+2)>f(log2π).
点评:本题考查了抛物线和对数的知识,注意抛物线性质的准确应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
12
x
+lnx的导函数为f′(x),则f′(2)=
5
5

查看答案和解析>>

同步练习册答案