精英家教网 > 高中数学 > 题目详情
(2013•长春一模)如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O为AC中点.
(1)证明:A1O⊥平面ABC;
(2)若E是线段A1B上一点,且满足VE-BCC1=
112
VABC-A1B1C1
,求A1E的长度.
分析:(1)由等腰三角形三线合一,可得A1O⊥AC,进而由侧面AA1C1C⊥底面ABC,结合面面垂直的性质定理可得A1O⊥平面ABC;
(2)由VE-BCC1=
1
12
VABC-A1B1C1
,可得BE=
1
4
BA1
,即A1E=
3
4
A1B
,解Rt△A1OB求出A1B,进而可得A1E的长度
解答:证明:(1)∵AA1=A1C=AC=2,且O为AC中点,
∴A1O⊥AC,
又∵侧面AA1C1C⊥底面ABC,侧面AA1C1C∩底面ABC=AC,A1O?侧面AA1C1C,
∴A1O⊥平面ABC.(6分)
解:(2)VE-BCC1=
1
12
VABC-A1B1C1=
1
4
VA1-BCC1

因此BE=
1
4
BA1

A1E=
3
4
A1B

又在Rt△A1OB中,A1O⊥OB,A1O=
3
,BO=1
可得A1B=2,
则A1E的长度为
3
2
.(12分)
点评:本小题以斜三棱柱为考查载体,考查平面几何的基础知识.同时题目指出侧面的一条高与底面垂直,搭建了空间直角坐标系的基本架构.本题通过分层设计,考查了空间直线垂直,以及线面成角等知识,考查学生的空间想象能力、推理论证能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•长春一模)已知:x>0,y>0,且
2
x
+
1
y
=1
,若x+2y>m2+2m恒成立,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长春一模)已知函数f(x)=ex(ax2-2x-2),a∈R且a≠0.
(1)若曲线y=f(x)在点P(2,f(2))处的切线垂直于y轴,求实数a的值;
(2)当a>0时,求函数f(|sinx|)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长春一模)椭圆
 x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,右焦点到直线x+y+
6
=0
的距离为2
3
,过M(0,-1)的直线l交椭圆于A,B两点.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 若直线l交x轴于N,
NA
=-
7
5
NB
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长春一模)定义在R上的函数f(x)满足f(x)+f(x+5)=16,当x∈(-1,4]时,f(x)=x2-2x,则函数f(x)在[0,2013]上的零点个数是
604
604

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长春一模)在正项等比数列{an}中,已知a1a2a3=4,a4a5a6=12,an-1anan+1=324,则n=(  )

查看答案和解析>>

同步练习册答案