精英家教网 > 高中数学 > 题目详情

【题目】我国南宋时期著名的数学家秦九韶在其著作《数书九章》中,提出了已知三角形三边长求三角形的面积的公式,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.若把以上这段文字写成公式,即,其中abc分别为内角ABC的对边.,则面积S的最大值为

A. B. C. D.

【答案】C

【解析】

将已知等式进行化简并利用正弦定理可得c=a,代入“三斜求积”公式即可计算得解.

,则sinCsinBcosC+cosBsinC)=sinB+C)=sinA由正弦定理得ca,∵b2

ABC的面积

,∴当a2时,△ABC的面积S有最大值为

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线与椭圆有相同焦点,且经过点(4,6)

(1)求双曲线方程;

(2)若双曲线的左,右焦点分别是F1F2,试问在双曲线上是否存在点P,使得|PF1|5|PF2|.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆右焦点为,右顶点为,点在椭圆上,且轴,直线轴于点,若

(1)求椭圆的离心率;

(2)设经过点且斜率为的直线与椭圆在轴上方的交点为,圆同时与轴和直线相切,圆心在直线上,且. 求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向右平移个单位后得到函数的图象,则( )

A. 图象关于直线对称 B. 图象关于点中心对称

C. 在区间单调递增 D. 在区间上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点的直线与直线垂直.

1 ,且点在函数的图象上,求直线的一般式方程;

2)若点在直线上,判断直线是否经过定点?若是,求出该定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是圆的直径,垂直圆所在的平面,是圆上的一点.

1)求证:平面 平面

2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线与原点为圆心的圆相交所得弦长为.

(1)若直线与圆切于第一象限,且直线与坐标轴交于点,当面积最小时,求直线的方程;

(2)设是圆上任意两点,点关于轴的对称点为,若直线分别交于轴与点,问是否为定值?若是,请求处该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 (a>b>0)的左焦点为F上顶点为B. 已知椭圆的离心率为A的坐标为.

I)求椭圆的方程;

II)设直线l 与椭圆在第一象限的交点为Pl与直线AB交于点Q. (O为原点) k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是等边三角形, 边上的动点(含端点),记,.

(1)求的最大值;

(2)若,求的面积.

查看答案和解析>>

同步练习册答案