已知是椭圆上两点,点M的坐标为.
(1)当两点关于轴对称,且为等边三角形时,求的长;
(2)当两点不关于轴对称时,证明:不可能为等边三角形.
(1)或,(2)详见解析.
解析试题分析:(1)求的长,实际求出坐标.利用正三角形性质列等量关系.设,,则.又点在椭圆上,所以解得或,或,(2)本题实际应用逆否命题与原命题等价进行解题,即当为等边三角形时,两点必关于轴对称,即横坐标相等.设,则由,可化简,同理可得,而,因此或又所以.
试题解析:解:
(1)设,, 1分
因为为等边三角形,所以. 2分
又点在椭圆上,
所以消去, 3分
得到,解得或, 4分
当时,;
当时,. 5分
{说明:若少一种情况扣2分}
(2)法1:根据题意可知,直线斜率存在.
设直线:,,,中点为,
联立消去得, 6分
由得到① 7分
所以,
, 8分
所以,又
如果为等边三角形,则有, 9分
所以,即, 10分
化简,② 11分
由②得,代入①得,
化简得,不成立,
科目:高中数学 来源: 题型:解答题
已知圆关于直线对称,圆心在第二象限,半径为.
(1)求圆的方程;
(2)是否存在直线与圆相切,且在轴、轴上的截距相等?若存在,求直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,如图,已知椭圆E:的左、右顶点分别为、,上、下顶点分别为、.设直线的倾斜角的正弦值为,圆与以线段为直径的圆关于直线对称.
(1)求椭圆E的离心率;
(2)判断直线与圆的位置关系,并说明理由;
(3)若圆的面积为,求圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;
(3)在(2)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求|PB|+|PQ|的最小值及此时点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;
(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com