精英家教网 > 高中数学 > 题目详情

函数f(x)=4x2mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f(1)等于                       (    )

       A.-7          B.1      

       C.17            D.25

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)利用函数单调性的定义证明函数h(x)=x+
3
x
在[
3
,∞)
上是增函数;
(2)我们可将问题(1)的情况推广到以下一般性的正确结论:已知函数y=x+
t
x
有如下性质:如果常数t>0,那么该函数在(0,
t
]
上是减函数,在[
t
,+∞)
上是增函数.
若已知函数f(x)=
4x2-12x-3
2x+1
,x∈[0,1],利用上述性质求出函数f(x)的单调区间;又已知函数g(x)=-x-2a,问是否存在这样的实数a,使得对于任意的x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,若不存在,请说明理由;如存在,请求出这样的实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
4x
2+4x

(1)用定义证明:函数f(x)是R上的增函数;
(2)证明:对任意的实数t,都有f(t)+f(1-t)=1;
(3)求值:f(
1
2012
)+f(
2
2012
)+f(
3
2012
)+
+f(
2011
2012
)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
4x2
,x∈(1,2]的值域是
(1,4)
(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x2-72-x
,(x∈[0,1])

(1)求f(x)的值域A
(2)设a≥1,函数g(x)=x3-3ax-2a,x∈[0,1]的值域为B,若A⊆B成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4x2+
1
x
,(x≠0)

(I)求函数f(x)的单调递增区间;
(II)设函数g(x)=ax3+
1
x
,(a>0)
,若对于任意的x∈(0,2],都有f(x)≥g(x)成立,求a的取值范围.

查看答案和解析>>

同步练习册答案