精英家教网 > 高中数学 > 题目详情
定义在[0,1]上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f(
x
5
)=
1
2
f(x),且当0≤x1<x2≤1时,f(x1)≤f(x2),则f(
1
2014
)等于(  )
A、
1
2
B、
1
16
C、
1
32
D、
1
64
考点:抽象函数及其应用,函数的值
专题:函数的性质及应用
分析:可令x=1,由f(0)=0,f(x)+f(1-x)=1,求得f(1)=1,又f(
x
5
)=
1
2
f(x),f( 
1
5
)=
1
2
;反复利用f(
x
5
)=
1
2
f(x),⇒f( 
1
3125
)=
1
2
f( 
1
625
)=
1
32
①;再令x=
1
2
,由f(x)+f(1-x)=1,可求得f( 
1
2
)=
1
2
,同理反复利用f( 
x
5
)=
1
2
f(x)⇒f( 
1
1250
)=
1
2
f( 
1
250
)=
1
32
②;又0≤x1<x2≤1时f(x1)≤f(x2),而 
1
3125
1
2014
1
1250
从而可求得f(
1
2014
)的值.
解答: 解:∵f(0)=0,f(x)+f(1-x)=1,令x=1得:f(1)=1,
又f(
x
5
)=
1
2
f(x),
∴当x=1时,f(
1
5
)=
1
2
f(1)=
1
2

令x=
1
5
,由f(
x
5
)=
1
2
f(x)得:
f(
1
25
)=
1
2
f(
1
5
)=
1
4

同理可求:f(
1
125
)=
1
2
f(
1
25
)=
1
8

f(
1
625
)=)=
1
2
f(
1
125
)=
1
16

f(
1
3125
)=
1
2
f(
1
625
)=
1
32

再令x=
1
2
,由f(x)+f(1-x)=1,可求得f(
1
2
)=
1
2

∴f(
1
2
)+f(1-
1
2
)=1,解得f(
1
2
)=
1
2

令x=
1
2
,同理反复利用f(
x
5
)=
1
2
f(x),
可得f(
1
10
)=)=
1
2
f(
1
2
)=
1
4

f(
1
50
)=
1
2
f(
1
10
)=
1
8


f(
1
1250
)=
1
2
f(
1
250
)=
1
32

由①②可得:,有f(
1
1250
)=f(
1
3125
)=
1
32

∵0≤x1<x2≤1时f(x1)≤f(x2),而0<
1
3125
1
2014
1
1250
<1
所以有f(
1
2014
)≥f(
1
3125
)=
1
32

       f(
1
2014
)≤f(
1
1250
)=
1
32

故f(
1
2014
)=
1
32

故选C.
点评:本题考查抽象函数及其应用,难点在于利用f(0)=0,f(x)+f(1-x)=1,两次赋值后都反复应用f( 
x
5
)=
1
2
f(x),分别得到关系式①②,从而使问题解决,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tan(α+β)=
2
5
,tan(β-
π
4
)=
1
4
,则tan(α+
π
4
)的值等于(  )
A、
13
18
B、
3
22
C、
13
22
D、
3
18

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)左、右焦点分别为F1,F2,P为椭圆上一点且∠F1PF2=
π
2
,PF1交y轴于点Q,若S △OQF1:S 四边形PQOF2=1:2,则离心率e=(  )
A、
1
2
B、2-
3
C、
3
-1
D、
5
-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥E-ABCD中,四边形ABCD为矩形,BE=BC,AE⊥BE,M为CE上一点,且BM⊥平面ACE.
(Ⅰ)求证:AE⊥BC;
(Ⅱ)若点N为线段AB的中点,求证:MN∥平面ADE;
(Ⅲ)若AB=2BC,求直线AC与平面BCE所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线a:2x+y-4=0,直线l:x+2y+4=0,求直线a关于直线l对称的直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x+1在区间[-2,2]上的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的各项均满足a1=3,a2=9,an+1•an-1=an2(n≥2,n∈N)数列{an}的通项公式an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,圆ρ=2cosθ的圆心到直线ρcosθ=2的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x2-4
(x>
2
),试在f(x)图象上找一点P,使得点P到直线2x-y+2=0距离最小,并求出最小距离.

查看答案和解析>>

同步练习册答案