精英家教网 > 高中数学 > 题目详情
当a>1时,
4
a-1
+a的最小值为
 
考点:基本不等式
专题:不等式的解法及应用
分析:变形利用基本不等式的性质即可得出.
解答: 解:∵a>1,
4
a-1
+a=(a-1)+
4
a-1
+1
≥2
(x-1)•
4
x-1
+1=5,当且仅当x=3时取等号.
∴当a>1时,
4
a-1
+a的最小值为5.
故答案为:5.
点评:本题考查了基本不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
b
是两个单位向量,且|k
a
+
b
|=
3
|
a
-k
b
|,若
a
b
的夹角为60°,则实数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在高一五次数学测试中,甲、乙两名同学的成绩分别为:
9088949192
9286959493
(Ⅰ)比较甲、乙同学的平均成绩;
(Ⅱ)请问:甲、乙同学的成绩谁更稳定?

查看答案和解析>>

科目:高中数学 来源: 题型:

化简或求值
(1)已知x<1,化简
3(x+1)3
+
4(x-1)4
+
384

(2)化简a 
9
2
a-3
÷(
3a7
3a-13
)(a>0)
(3)求值(0.064)- 
1
3
-(-
3
4
0+[(-2)3] 
4
3
+16-0.75

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数 f(x)对于任意的x,y∈R,都有f(x+y)=f(x)+f(y)且x>0时f(x)<0,f(1)=-2.
(1)判断f(x)的奇偶性,并证明.
(2)证明f(x)在R上是减函数,并求出x∈[-3,3]时,f(x)的最大值及最小值.
(3)若f(2x+5)+f(6-7x)>4,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

比较(1+
1
n+1
)n+1
(1+
1
n
)n
(n∈N)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,|
AB
|=3,|
AC
|=1,l为BC的垂直平分线且交BC于点D,E为l上异于D的任意一点,F为线段AD上的任意一点.
(1)求
AD
•(
AB
-
AC
)的值;
(2)判断
AE
•(
AB
-
AC
)的值是否为一常数,并说明理由;
(3)若AC⊥BC,求
AF
•(
FB
+
FC
)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

OA
=(1,-2),
OB
=(a,-1),
OC
=(-b,0),(a>0,b>0,O为坐标原点),若A,B,C三点共线,则
1
a
+
2
b
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={(x,y)|
y-3
x-2
=a+1},B={(x,y)|(a2-1)x+(a-1)y=30},当a取何实数时,A∩B≠∅?

查看答案和解析>>

同步练习册答案