精英家教网 > 高中数学 > 题目详情
19.在△ABC中,已知cosC+cosAcosB-$\sqrt{3}$sinAcosB=0
(Ⅰ)求角B的大小;
(Ⅱ)若a+c=1,求b的取值范围.

分析 (Ⅰ)利用两角和的余弦公式,将cosAcosB+cosC=$\sqrt{3}$sinAcosB,变形为sinAsinB=$\sqrt{3}$sinAcosB,即可求B.
(Ⅱ)由余弦定理可得 b2=1-3ac,利用基本不等式求出b≥$\frac{1}{2}$,再由b<a+c=1,求出边b的取值范围.

解答 解:(Ⅰ)由已知得cosAcosB+cosC=$\sqrt{3}$sinAcosB,
即cosAcosB+cos[π-(A+B)]=$\sqrt{3}$sinAcosB.
cosAcosB-cos(A+B)=$\sqrt{3}$sinAcosB.
所以sinAsinB=$\sqrt{3}$sinAcosB,两边除以sinA,得,tanB=$\sqrt{3}$,
∴B=$\frac{π}{3}$,
(Ⅱ)由余弦定理可得 b2=a2+c2-2ac•cosB=a2+c2-ac=(a+c)2-3ac=1-3ac.
∵a+c=1≥2$\sqrt{ac}$,
∴ac≤$\frac{1}{4}$.
∴b2=1-3ac≥$\frac{1}{4}$,即b≥$\frac{1}{2}$.
再由b<a+c=1,可得 $\frac{1}{2}$≤b<1,故边b的取值范围是[$\frac{1}{2}$,1).

点评 本题考查三角函数公式,余弦定理、基本不等式的综合灵活应用,考查转化变形、计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.函数y=f(x)是定义域为R的奇函数,当x<0时,f(x)=x3+2x-1,则x>0时函数的解析式f(x)=x3-2-x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知一个动点M在圆x2+y2=36上移动,它与定点Q(4,0)所连线段的中点为P,则点P的轨迹方程(x-2)2+y2=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若$a=\frac{1}{6}$,则$4{a^{\frac{2}{3}}}{b^{-\frac{1}{3}}}$÷$(-\frac{2}{3}{a^{-\frac{1}{3}}}{b^{-\frac{1}{3}}})$+${(\frac{16}{81})^{-\frac{1}{4}}}$=(  )
A.$\frac{1}{2}$B.1C.-1D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一块四边形土地的形状如图,它的三边长分别是2($\sqrt{6}$+$\sqrt{2}$)m,2$\sqrt{2}$m,4m,两个内角是120°和105°,则四边形的面积为(  )
A.10+8$\sqrt{3}$m2B.12+10$\sqrt{3}$m2C.12+8$\sqrt{3}$m2D.10+10$\sqrt{3}$m2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C:x2+y2=4.
(1)求过定点M(4,0)的圆的切线方程;
(2)直线l过点P(1,2),且与圆C交于A,B两点,若$|{AB}|=2\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}x,x<t}\\{{x}^{2}-6x+10,x≥t}\end{array}\right.$(a>0,a≠1),若?t∈(2,3),?y0∈R,使得f(x)=y0有三个不等的实根,则实数a的取值范围是(  )
A.(0,1)∪(1,3]B.(0,1)∪(1,3)C.(0,1)∪(2,+∞)D.(0,1)∪(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在圆x2y2=1内任取一点,以该点为中点作弦,则所作弦的长度超过$\sqrt{2}$的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.二项式(2x-1)8的展开式中,求:
(1)二项式系数最大的项;
(2)所有二项式系数之和;
(3)求所有奇数次幂项的系数和.

查看答案和解析>>

同步练习册答案