精英家教网 > 高中数学 > 题目详情
若定义在R上的偶函数f(x)在(-∞,0]上是增函数,且f(-
1
2
)=2
,那么不等式f(sin(2x-
π
3
))<2
[-
π
2
π
2
]
上的解集为(  )
A、[-
π
2
,-
π
3
)∪(-
π
4
π
12
)∪(
π
6
π
2
]
B、[-
π
2
,-
π
3
)∪(
π
6
π
2
]
C、[-
π
2
,-
π
3
)∪(-
π
4
π
2
D、[-
π
2
,-
12
)∪(-
π
4
π
12
)∪(
π
4
π
2
]
分析:利用偶函数的图象关于y轴对称,又且在(-∞,0]上为增函数,将不等式中的抽象的对应法则“f”化去,变形为三角不等式,求出解集.
解答:解:∵f(x)是定义在R上的偶函数,且在(-∞,0]上为增函数,f(-
1
2
)=2
f(
1
2
)=2
∴原不等式可化为sin(2x-
π
3
)<-
1
2
  或   sin(2x-
π
3
)>
1
2

∵x∈[-
π
2
π
2
]
∴2x-
π
3
∈[-
3
3
],∴须2x-
π
3
∈[-
3
,-
3
)∪(-
6
,-
π
6
)∪(
π
6
3
],解得x∈[-
π
2
, -
12
)∪(-
π
4
π
12
)∪(
π
4
π
2
]
故选D
点评:本题主要考查函数的奇偶性、单调性及其应用,三角不等式的解法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=ex,则g(x)=(  )
A、ex-e-x
B、
1
2
(ex+e-x
C、
1
2
(e-x-ex
D、
1
2
(ex-e-x

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个命题:
①若定义在R上的偶函数f(x)在(0,+∞)上单调递增,则f(x)在(-∞,0)上单调递减;
②函数y=
kx2-6kx+9
的定义域为R,则k的取值范围是(0,1];
③要得到y=3sin(3x+
π
4
)
的图象,只需将y=3sin2x的图象左移
π
4
个单位;
④若函数 f(x)=x3-ax在[1,+∞)上是单调递增函数,则a的最大值是3.
所有正确命题的序号为
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)-log5|x|的零点个数有
8
8
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在区间[0,1]上单调递减,则(  )
A、f(2)<f(
1
2
)<f(1)
B、f(1)<f(2)<f(
1
2
)
C、f(
1
2
)<f(2)<f(1)
D、f(1)<f(
1
2
)<f(2)

查看答案和解析>>

同步练习册答案