精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,过椭圆右顶点和上顶点的直线与圆相切.

(1)求椭圆的方程;

(2)设是椭圆的上顶点,过点分别作直线交椭圆两点,设这两条直线的斜率分别为,且,证明:直线过定点.

【答案】(1);(2)证明见解析

【解析】

试题分析:对于问题(1)可以先根据题目的条件写出直线方程,再由直线与圆相切,即可求出的值,进而得到椭圆的方程;对于问题(2),首先讨论直线的斜率存在与否,当直线斜率存在时可设出直线的方程以及两点的坐标,联立椭圆与直线的方程,并结合韦达定理即可证出直线过定点,再验证直线的斜率不存在时,直线仍过该定点.

试题解析:(1)直线过点直线方程为

直线与圆相切,,解得

椭圆的方程为

(2)当直线的斜率不存在时,设,则,由,得

当直线的斜率存在时,设的方程为

故直线过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数数列满足).

(1)求数列的通项公式

(2)设,若恒成立求实数的取值范围

(3)是否存在以为首项公比为)的数列使得数列的每一项都是数列的不同的项若存在求出所有满足条件的数列的通项公式若不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(请选做其中一题)

(1)请推导等差数列及等比数列前项和公式;

(2)如果你在海上航行,请设计一种测量海上两个小岛之间距离的方法并作图说明;

(3)某工厂要建造一个长方形无盖贮水池,其容积为4800立方米,深为3米,如果池底每平米的造价为150元,池壁每平米造价为120元,怎样设计水池能使造价最低?最低总造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)当时,函数的图象有三个不同的交点,求实数的范围;

2)讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过椭圆上一点轴作垂线,垂足为左焦点分别为的右顶点,上顶点,且.

1)求椭圆的方程;

2上的两点,若四边形逆时针排列)的对角线所在直线的斜率为,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】校高一1班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图

1求分数在的频率及全班人数;

2求分数在之间的频数,并计算频率分布直方图中间矩形的高;

3若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在之间的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后2次抛掷一枚骰子,将得到的点数分别记为a,b.

(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;

(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为,第二次出现的点数为

(1)求事件的概率;

(2)求事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线在点处与直线相切,求的值;

(2)若曲线与直线有两个不同交点,求的取值范围.

查看答案和解析>>

同步练习册答案