精英家教网 > 高中数学 > 题目详情

【题目】下列四个结论中正确的个数是

(1)对于命题使得,则都有

(2)已知,则

(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为

(4)“”是“”的充分不必要条件.

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定。

由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;

(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以 是正确的;

(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;

(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,底面是边长为的等边三角形, 的中点,侧棱,点上,点上,且 .

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若时,求函数的最小值;

(2)若函数既有极大值又有极小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数

)求函数的极值.

)证明:当时,

)当时,方程无解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称函数上的有界函数,其中称为函数的上界.已知函数

1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

2)若函数上是以为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知|x|≤2,|y|≤2,P的坐标为(x,y).

(1)求当x,yR,P满足(x-2)2+(y-2)2≤4的概率.

(2)求当x,yZ,P满足(x-2)2+(y-2)2≤4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以两条互相垂直的公路所在直线分别为x轴,y轴建立平面直角坐标系,公路附近有一居民区EFG和一风景区,其中单位:百米,风景区的部分边界为曲线C,曲线C的方程为,拟在居民和风景区间辟出一个三角形区域EMN用于工作人员办公,点M,N分别在x轴和EF上,且MN与曲线C相切于P点.

设P点的横坐标为t,写出面积的函数表达式

当t为何值时,面积最小?并求出最小面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为3 ,直线 与抛物线 交于 两点, 为坐标原点。

(1)求抛物线的方程;

(2)求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线Cy2=4x焦点为F,直线lC交于AB两点.

(1)若l过F且斜率为1,求|AB|;

(2)若不过坐标原点O,且OAOB,证明:直线l过定点.

查看答案和解析>>

同步练习册答案