【题目】如图,以两条互相垂直的公路所在直线分别为x轴,y轴建立平面直角坐标系,公路附近有一居民区EFG和一风景区,其中
单位:百米
,
,风景区的部分边界为曲线C,曲线C的方程为
,拟在居民和风景区间辟出一个三角形区域EMN用于工作人员办公,点M,N分别在x轴和EF上,且MN与曲线C相切于P点.
![]()
设P点的横坐标为t,写出
面积的函数表达式
;
当t为何值时,
面积最小?并求出最小面积.
科目:高中数学 来源: 题型:
【题目】函数
的一段图象如图所示
![]()
(1)求
的解析式;
(2)求
的单调增区间,并指出
的最大值及取到最大值时
的集合;
(3)把
的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
的方程为
,抛物线
:
的焦点为
,点
是抛物线
上到直线
距离最小的点.
(1)求点
的坐标;
(2)若直线
与抛物线
交于
两点,
为
中点,且
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个结论中正确的个数是
(1)对于命题
使得
,则
都有
;
(2)已知
,则 ![]()
(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为
;
(4)“
”是“
”的充分不必要条件.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·湖北武汉第二次调研)如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35),[35,40),[40,45)的上网人数呈现递减的等差数列分布,则年龄在[35,40)的网民出现的频率为 ( )
![]()
A. 0.04 B. 0.06
C. 0.2 D. 0.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列的
公差
不为0,
是其前
项和,给出下列命题:
①若
,且
,则
和
都是
中的最大项;
②给定
,对一切
,都有
;
③若
,则
中一定有最小项;
④存在
,使得
和
同号.
其中正确命题的个数为( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100名学生的数学成绩,发现都在
内现将这100名学生的成绩按照
,
,
,
,
,
,
分组后,得到的频率分布直方图如图所示,则下列说法正确的是
![]()
![]()
A. 频率分布直方图中a的值为![]()
B. 样本数据低于130分的频率为![]()
C. 总体的中位数
保留1位小数
估计为
分
D. 总体分布在
的频数一定与总体分布在
的频数相等
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com