精英家教网 > 高中数学 > 题目详情
设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是(  )
A、-x0是-f(-x)的极小值点B、任意x∈R,f(x)≤f(x0C、-x0是f(-x)的极小值点D、-x0是-f (x)的极小值点
分析:由于-f(-x),f(-x),-f(x)与f(x)的图象分别关于原点,y轴,x轴做对称,即可得到结论.
解答:解:对于A项,-f(-x)是把f(x)的图象关于原点做对称,因此-x0是-f(-x)的极小值点;
对于B项,x0(x0≠0)是f(x)的极大值点,不一定是最大值点,因此不能满足在整个定义域上值最大;
对于C项,f(-x)是把f(x)的图象关于y轴对称,因此,-x0是f(-x)的极大值点;
对于D项,-f(x)是把f(x)的图象关于x轴对称,因此,-x0是-f(x)的极大值点;
故选:A.
点评:本题考查函数的极值,考查函数图象的对称性,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-
3
2
)与b=f(
15
2
)的大小关系为
a>b
a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)为定义在[0,1]上的非减函数,且满足以下三个条件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③当x∈[0,
1
4
]
时,f(x)≥2x恒成立.则f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-数学公式)与b=f(数学公式)的大小关系为________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省蚌埠二中高三(上)12月月考数学试卷(文科)(解析版) 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-)与b=f()的大小关系为   

查看答案和解析>>

科目:高中数学 来源:山东省月考题 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x﹣cosx,则a=f(﹣)与b=f()的大小关系为(    ).

查看答案和解析>>

同步练习册答案