精英家教网 > 高中数学 > 题目详情
1.数列{an}的通项公式是an=ncos$\frac{nπ}{2}$,其前n项和为Sn,则S2016等于(  )
A.1008B.2016C.504D.0

分析 根据余弦函数的性质得出{an}每4项的和为常数2,从而得出答案.

解答 解:当n为奇数时,an=0,
当n=4k+2时,an=-n=-4k-2,
当n=4k+4时,an=n=4k+4,k=0,1,2,3…,
∴a4k+1+a4k+2+a4k+3+a4k=2,
∴S2016=2×$\frac{2016}{4}$=1008.
故选:A.

点评 本题考查了数列求和,余弦函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}x=-2+4t\\ y=3t\end{array}\right.$(t为参数).
(1)写出曲线C的参数方程,直线l的普通方程;
(2)求曲线C上任意一点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,正六边形ABCDEF的边长为2,P是线段DE上的任意一点,则$\overrightarrow{AP}$•$\overrightarrow{BF}$的取值范围为[0,6]..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥E-ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,且AB=4,BC=CD=ED=EA=2.
(1)求二面角E-AB-D的正切值;
(2)在线段CE上是否存在一点F,使得平面EDC⊥平面BDF?若存在,求$\frac{EF}{EC}$的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知幂函数y=f(x)的图象过点(2,$\frac{\sqrt{2}}{2}$),则(  )
A.f(1)>f(2)B.f(1)<f(2)
C.f(1)=f(2)D.f(1)与f(2)大小无法判定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某电力公司调查了某地区夏季居民的用电量y(万千瓦时)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t),如表是某日各时的用电量数据:
t(时)03691215182124
y(万千瓦时)2.521.522.521.522.5
经长期观察y=f(t)的曲线可近似地看成函数y=Asin(ωt+φ)+B(A>0,0<φ<π).
(Ⅰ)根据以上数据,求出函数y=Asin(ωt+φ)+B(A>0,0<φ<π)的解析式;
(Ⅱ)为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高高峰时期的电价,同时降低低峰时期的电价,鼓励企业在低峰时用电.若居民用电量超过2.25万千瓦时,就要提高企业用电电价,请依据(Ⅰ)的结论,判断一天内的上午8:00到下午18:00,有几个小时要提高企业电价?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a,b∈R,集合A={1,b,a+b},$B=\left\{{0,\frac{a}{b},a}\right\}$,且A=B,则a+2b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知tanθ=2,则$\frac{{sin(\frac{π}{2}+θ)-cos(π-θ)}}{{sin(\frac{π}{2}-θ)-sin(π-θ)}}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.请严格用三段论证明:函数$y=\frac{{{2^x}-1}}{{{2^x}+1}}$是奇函数.

查看答案和解析>>

同步练习册答案