精英家教网 > 高中数学 > 题目详情

【题目】某次测试成绩满分是为150分,设名学生的得分分别为名学生中得分至少为分的人数.名学生的平均成绩,则(

A.B.

C.D.

【答案】A

【解析】

由于选项中必有一项正确,故本选择题利用特殊法解决.设,这2名学生的得分分别为150150.则这2名学生中得分至少为分的人数分别为:2222.一共有150个“2”,计算的值,再对照选项即可得到答案.

利用特殊法解决.

假设,这2名学生的得分分别为150150

则这2名学生中得分至少为1分的人数分别为:

2名学生中得分至少为2分的人数分别为:

2名学生中得分至少为3分的人数分别为:

2名学生中得分至少为150分的人数分别为:

即这2名学生中得分至少为分的人数分别为:

2222.一共有150个“2”,

从而得分的同学会被记次,所有的和恰好是所有人得分的总和,

从而

对照选项,只有(A)正确.

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出盒该产品获利润元,未售出的产品,每盒亏损元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.

1)根据直方图估计这个开学季内市场需求量的众数和平均数(同一组中的数据用该组区间的中点值为代表);

2)将表示为的函数;

3)根据直方图估计利润不少于元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小陈同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,否则为.

(1)求小陈同学三次投篮至少命中一次的概率;

(2)记小陈同学三次投篮命中的次数为随机变量,求的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点的直线与椭圆交于不同的两点,其中为坐标原点

(1),求的面积;

(2)在轴上是否存在定点,使得直线的斜率互为相反数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在函数)的所有切线中,有且仅有一条切线与直线垂直.

(1)求的值和切线的方程;

(2)设曲线在任一点处的切线倾斜角为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年冬,北京雾霾天数明显减少,据环保局统计三个月的空气质量,达到优良的天数超过70.重度污染的天数仅有4.主要原因是政府对治理雾霾采取了有效措施,如①减少机动车尾气排放;②实施了煤改电或煤改气工程;③关停了大量的排污企业;④部分企业季节性的停产.为了解农村地区实施煤改气工程后天然气使用情况,从某乡镇随机抽取100户,进行均用气量调查,得到的用气量数据(单位:千立方米)均在区间围内,将数据按区间列表如下:

分组

频数

频率

14

0.14

55

0.55

4

0.04

2

0.02

合计

100

1

1)求表中的值;

2)若同组中的每个数据用该组区间中点值代替,估计该乡每户月平均用气量;

3)从用量高于3千立方米的用户中任选2户,进行燃气使用的满意度调查,求这2户用气量处于不同区间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的坐标方程为,若直线与曲线相切.

(1)求曲线的极坐标方程;

(2)在曲线上取两点于原点构成,且满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 n 个四元集合 A1A2 ,…, An ,每两个有且只有一个公共元 ,并且有Card(A1 A2 An)=n .试求 n 的最大值.这里 Card A 为集合A中元素的个数 .

查看答案和解析>>

同步练习册答案