精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为( )
A.(﹣1,1)
B.
C.(﹣1,0)
D.

【答案】B
【解析】解:∵原函数的定义域为(﹣1,0),
∴﹣1<2x+1<0,解得﹣1<x<﹣
∴则函数f(2x+1)的定义域为
故选B.
【考点精析】根据题目的已知条件,利用函数的定义域及其求法的相关知识可以得到问题的答案,需要掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为 (其中为参数).现以坐标原点为极点轴的非负半轴为极轴建立极坐标标系,曲线的极坐标方程为.

(1)写出直线的普通方程和曲线的直角坐标方程;(2)求直线被曲线截得的线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ln(x+m)
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(2)当m≤2时,证明f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且经过点.

(1)求椭圆方程;

(2)过点的直线与椭圆交于两个不同的点,求线段的垂直平分线在轴截距的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,已知直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为直线与曲线交于两点.

(1)求直线l的普通方程和曲线的直角坐标方程;

(2)已知点的极坐标为,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2+ax+ 是增函数,则a的取值范围是(
A.[﹣1,0]
B.[﹣1,∞]
C.[0,3]
D.[3,+∞]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是等边三角形.

(1)证明:PB⊥CD;
(2)求二面角A﹣PD﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品有4只次品和6只正品,每只产品均不相同且可区分,今每次取出一只来测试,直到这4只次品全测出为止,则最后一只次品恰好在第五次测试时被发现,则不同情况种数是______(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,边a、b、c分别是角A、B、C的对边,且满足bcosC=(3a-c)cosB

(1)求cosB

(2)若△ABC的面积为4,b=4,求△ABC的周长

查看答案和解析>>

同步练习册答案