精英家教网 > 高中数学 > 题目详情
2.过点(2,2)的直线l与圆x2+y2+2x-2y-2=0相交于A,B两点,且$|{AB}|=2\sqrt{3}$,则直线l的方程为(  )
A.3x-4y+2=0B.3x-4y+2=0,或x=2C.3x-4y+2=0,或y=2D.y=2,或x=2

分析 由已知中圆的标准方程可以求出圆心坐标及半径,结合直线l被圆所截弦长,根据半弦长,弦心距,半径构造直角三角形,满足勾股定理,求出弦心距,分直线l的斜率不存在和直线l的斜率存在两种情况分类讨论,最后综合讨论结果,可得答案.

解答 解:∵圆x2+y2+2x-2y-2=0,即(x+1)2+(y-1)2=4,圆心(-1,1),半径为2,
若$|{AB}|=2\sqrt{3}$,则圆心(-1,1)到直线l距离d=1,
若直线l的斜率不存在,即x=2,
此时圆心(-1,1)到直线l距离为3不满足条件,
若直线l的斜率存在,则可设直线l的方程为y-2=k(x-2),
即kx-y-2k+2=0,
则d=$\frac{|-3k+1|}{\sqrt{{k}^{2}+1}}$=1,
解得k=0或$\frac{3}{4}$,
此时直线l的方程为3x-4y+2=0,或y=2,
故选C.

点评 本题考查的知识点是直线与圆的位置关系,其中根据半弦长,弦心距,半径构造直角三角形,满足勾股定理,求出弦心距,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.“x>-2”是“(x+2)(x-3)<0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题p:“?x∈R,x2+2<0”,则¬p为(  )
A.?x∈R,x2+2≥0B.?x∉R,x2+2<0C.?x∈R,x2+2≥0D.?x∈R,x2+2>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,某几何体的主视图和左视图是全等的等腰直角三角形,俯视图是边长为2的正方形,那么它的体积为(  )
A.$\frac{16}{3}$B.4C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合M={x|x<-1或x>2},N={x|1<x<3},则M∩N等于    (  )
A.{x|x<-1或x>1}B.{x|2<x<3}C.{x|-1<x<3}D.{x|x<-1或x>3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.将函数$f(x)=2sin(2x+\frac{π}{6})$的图象向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,则g(0)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设复数Z满足$Z=\frac{1+3i}{1-i}$,则Z的共轭复数为(  )
A.1+2iB.-1+2iC.1-2iD.-1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知倾斜角为60°的直线l过点(0,-2$\sqrt{3}$)和椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点,且椭圆的离心率为$\frac{\sqrt{6}}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过(-3,0)点的直线l与椭圆相交于A,B两点,若以线段A,B为直径的圆过椭圆的左焦点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.△ABC的内角A,B,C的对边分别为a,b,c,已知a=2$\sqrt{5}$,c=4,cosA=$\frac{2}{3}$,则b=(  )
A.2$\sqrt{2}$B.2$\sqrt{5}$C.4D.6

查看答案和解析>>

同步练习册答案