精英家教网 > 高中数学 > 题目详情
已知z是复数,若z+2i为实数(i为虚数单位),且z-4为纯虚数.
(1)求复数z;
(2)若复数(z+mi)2在复平面上对应的点在第四象限,求实数m的取值范围.
考点:复数代数形式的乘除运算,复数的代数表示法及其几何意义
专题:
分析:(1)设z=x+yi(x,y∈R).利用复数的运算法则、复数为实数、纯虚数的条件即可得出;
(2)根据复数的运算法则和几何意义即可得出.
解答: 解:(1)设z=x+yi(x,y∈R).
由z+2i=x+(y+2)i为实数,得y+2=0,即y=-2.
由z-4=(x-4)+yi为纯虚数,得x=4.
∴z=4-2i.
(2)∵(z+mi)2=(-m2+4m+12)+8(m-2)i,
根据条件,可知
12+4m-m2>0
8(m-2)<0
        
解得-2<m<2,
∴实数m的取值范围是(-2,2).
点评:本题考查了复数的运算法则、纯虚数的定义、几何意义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,ABCD是边长为2的正方形,∠APC是直角,且平面PAC⊥平面ABCD,点E是PA的中点.
(1)证明:AP⊥平面BDE;
(2)若AP=
2
,求直线CD与平面BDE所成的线面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,曲线C1是以原点O为中心,F1,F2为焦点的椭圆的一部分.曲线C2是以原点O为顶点,F2为焦点的抛物线的一部分,A,B是曲线C1和C2的交点且∠AF2F1为钝角,若|AF1|=
7
2
,|AF2|=
5
2

(1)求曲线C1和C2的方程;
(2)设点C,D是曲线C2所在抛物线上的两点(如图).设直线OC的斜率为k1,直线OD的斜率为k2,且k1+k2=
2
,证明:直线CD过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=-x+3
x
+1,则y的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥P-ABC中,PA,PB,PC两两垂直,且PA=2
7
,PB=PC=2
2
,求三棱锥的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知PA垂直于矩形ABCD所在平面,M,N分别是AB,PC的中点.
(1)求证:CD⊥平面PAD; 
(2)求证:MN∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=
n+2
3
an(n∈N*),a1=
1
3

①求证:数列{
an
n(n+1)
}为常数列,并求出数列{an}的通项公式;
②设Tn=
1
a1
+
1
a2
+
1
a3
+…+
1
an
,若对任意的n∈N*,x∈(0,+∞),不等式Tn<x-2lnx+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两人进行乒乓球比赛,各局相互独立,约定每局胜者得1分,负者得0分,如果两人比赛五局,乙得1分与得2分的概率恰好相等.
(1)求乙在每局中获胜的概率为多少?
(2)假设比赛进行到有一人比对方多2分或打满6局时停止,用ξ表示比赛停止时已打局数,求ξ的期望Eξ

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若(b+c-a)(b-c+a)=ac,则B=
 

查看答案和解析>>

同步练习册答案