精英家教网 > 高中数学 > 题目详情
13.四个命题:
①?x∈R,x2-3x+2>0恒成立;
②?x∈Q,x2=2;
③?x∈R,x2-1=0;
④?x∈R,4x2>2x-1+3x2
其中真命题的个数为1.

分析 ①,x2-3x+2>0⇒x>2或x<1,;
②,x2=2⇒x=±$\sqrt{2}$,;
③,x=1时,x2-1=0,;
④,x=1时,4x2=2x-1+3x2,.

解答 解:对于①,x2-3x+2>0⇒x>2或x<1,故错;
对于②,x2=2⇒x=±$\sqrt{2}$,故错;
对于③,x=1时,x2-1=0,故正确;
对于④,x=1时,4x2=2x-1+3x2,故错.
故答案为:1

点评 本题考查了命题真假的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,四边形ABCD是矩形,AB=1,$AD=\sqrt{2}$,E是AD的中点,BE与AC交于点F,GF⊥平面ABCD.
(Ⅰ)求证:AF⊥面BEG;
(Ⅱ)若AF=FG,求二面角E-AG-B所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=f'(1)x3-2x2+3,则f'(2)的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足|PF1|=2|PF2|,∠PF1F2=30°,则椭圆的离心率$\frac{2\sqrt{3}-3}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,上顶点为B,直线l:y=$\frac{1}{2}$x与椭圆E交于C,D两点,且△BCD的面积为$\sqrt{2}$.
(1)求椭圆E的标准方程;
(2)设点P是椭圆E上一点,过点P引直线m,其倾斜角与直线l的倾斜角互补.若直线m与椭圆E相交,另一交点为Q,且直线m与x,y轴分别交于点M,N,求证:QM2+QN2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}各项均为正数,a1=$\frac{1}{2}$,且对任意的n∈N*,都有an+1=an+λan2(λ>0).
(1)取λ=$\frac{1}{{{a_{n+1}}}}$,求证:数列$\left\{{\frac{{{a_{n+1}}}}{a_n}}\right\}$是等比数列,并求数列{an}的通项公式;
(2)若λ=$\frac{1}{2016}$,是否存在n∈N*,使得an>1,若存在,试求出n的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.等差数列{an}前n项和为Sn,已知(1-a10075-2017(a1007-1)=1,(1-a10115-2017(a1011-1)=-1,则(  )
A.S2017=2017,a1007>a1011B.S2017=-2017,a1007>a1011
C.S2017=2017,a1007<a1011D.S2017=-2017,a1007<a1011

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PA⊥PC,底面ABCD为菱形,G为PC中点,E、F分别为AB、PB上一点,△BCE的面积为6$\sqrt{3},AB=4AE=4\sqrt{2},AC=4\sqrt{6}$,PB=4PF.
(1)求证:AC⊥DF;
(2)求证:EF∥平面BDG;
(3)求三棱锥B-CEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.阅读如图所示程序框图.若输入的x=3,则输出的y的值为(  )
A.40B.30C.25D.24

查看答案和解析>>

同步练习册答案