精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
为了解社会对学校办学质量的满意程度,某学校决定用分层抽样的方法从高中三个年级的家长委员会中共抽取6人进行问卷调查,已知高一、高二、高三的家长委员会分别有54人、1 8人、36人.
(I)求从三个年级的家长委员会中分别应抽的家长人数;
(Ⅱ)若从抽得的6人中随机抽取2人进行训查结果的对比,求这2人中至少有一人是高三学生家长的慨率.

(1) 3,1,2 (2)

解析试题分析:解:(Ⅰ)家长委员会人员总数为54+18+36=108,样本容量与总体中的个体数的比为,故从三个年级的家长委员会中分别抽取的人数为3,1,2人.
(Ⅱ)设为从高一抽得的3个家长,为从高二抽得的1个家长,为从高三抽得的2个家长.
则抽取的全部结果有:(),(),(),(),(),(),(),(),(),(),(),(),(),(),()共15种,
“至少有一人是高三学生家长”,结果有(),(),(),(),(),(),(),(),()共9种.
所以这2人中至少有1人是高三学生家长的概率是
考点:本试题考查了抽样方法和古典概型概率的求解。
点评:解决该试题的关键是用分层抽样的方法按照等比例性来求解各个层抽取的人数,然后结合古典概型的试验,求解基本事件空间,然后结合事件和排列组合的知识来表示概率值,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某品牌汽车4S店对最近100位采用分期付款的购车者进行统计,统计结果如下表所示:

付款方式
分1期
分2期
分3期
分4期
分5期
频数
40
20

10

已知分3期付款的频率为0.2,4s店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元,分2期或3期付款其利润为1.5万元,分4期或5期付款,其利润为2万元,用Y表示经销一辆汽车的利润。
(Ⅰ)求上表中的值;
(Ⅱ)若以频率作为概率,求事件:“购买该品牌汽车的3位顾客中,至多有一位采用3期付款”的概率;
(Ⅲ)求Y的分布列及数学期望EY

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球中恰有1个红球的概率;
(Ⅱ)设“从甲盒内取出的2个球恰有1个为黑球”为事件A;“从乙盒内取出的2个球都是黑球”为事件B,求在事件A发生的条件下,事件B发生的概率;
(Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.
(Ⅰ)求X的分布列;
(Ⅱ)求X的数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)某校举行环保知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题连续两次答错的概率为,(已知甲回答每个问题的正确率相同,并且相互之间没有影响。)(I)求甲选手回答一个问题的正确率;(Ⅱ)求选手甲可进入决赛的概率;(Ⅲ)设选手甲在初赛中答题的个数为,试写出的分布列,并求的数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题14分)口袋内有)个大小相同的球,其中有3个红球和个白球.已知从
口袋中随机取出一个球是红球的概率是,且。若有放回地从口袋中连续地取四次球(每次只取一个球),在四次取球中恰好取到两次红球的概率大于
(Ⅰ)求
(Ⅱ)不放回地从口袋中取球(每次只取一个球),取到白球时即停止取球,记为第一次取到白球时的取球次数,求的分布列和期望

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)文科班某同学参加广东省学业水平测试,物理、化学、生物获得等级A和获得等级不是A的机会相等,物理、化学、生物获得等级A的事件分别记为,物理、化学、生物获得等级不是A的事件分别记为.
(I)试列举该同学这次水平测试中物理、化学、生物成绩是否为A的所有可能结果(如三科成绩均为A记为();
(II)求该同学参加这次水平测试获得两个A的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题10分)某校高三某班的一次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求分数在[90,100]之间的份数的数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设点A为半径是1的圆O上一定点,在圆周上等可能地任取一点B.
(1)求弦AB的长超过圆内接正三角形边长的概率;
(2)求弦AB的长超过圆半径的概率.

查看答案和解析>>

同步练习册答案