分析 先把三项式写成二项式,求得二项式展开式的通项公式,再求一次二项式的展开式的通项公式,令x的幂指数等于2,求得r、m的值,即可求得x2项的系数.
解答 解(x+$\frac{1}{x}$+2)3=[(x+$\frac{1}{x}$)+2]3 的展开式的通项公式为Tr+1=C3r23-r(x+$\frac{1}{x}$)r.
对于(x+$\frac{1}{x}$)r,通项公式为Tm+1=Crm•xr-2m.
令r-2m=2,根据0≤m≤r,r、m为自然数,求得r=2,m=0,
x+$\frac{1}{x}$+2)3的展开式中,x2的系数是C322C20=6
故答案为:6
点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | a+b=22 | B. | a+b=21 | C. | ab=20 | D. | ab=21 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 5 | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 晋级成功 | 晋级失败 | 合计 | |
| 男 | 16 | ||
| 女 | 50 | ||
| 合计 |
| P(K2≥k) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| k | 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com