精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
x2+ax-(a+1)lnx
(a<-1).
(1)若函数f(x)在x=2处的切线与x轴平行,求a的值,并求出函数的极值;
(2)已知函数g(x)=4lnx-2x+ln(b2-2b),在(1)的条件下,若f(x)>g(x)恒成立,求b的取值范围.
(1)∵函数f(x)=
1
2
x2+ax-(a+1)lnx
(a<-1)
∴f(x)的定义域为(0,+∞)且f′(x)=x+a-
a+1
x
=
x2+ax-(a+1)
x
,(1分)
∵f(x)在x=2处的切线与x轴平行
∴f'(2)=0
∴a=-3,(3分)此时f'(x)=
(x-1)(x-2)
x

∴当x∈(0,1)时f(x)>0,x∈(1,2)时f(x)<0,x∈(2,+∞)时f(x)>0
∴f(x)在(0,1)上单调递增,在(1,2)上单调递减,在(2,+∞)上单调递增
∴当x=1时,f(x)有极大值f(1)=-
5
2

当x=2时,f(x)有极小值f(2)=-4+2ln2.(6分)
(2)令F(x)=f(x)-g(x)
则F(x)的定义域为(0,+∞),F(x)=
1
2
x2-3x+2lnx
-4lnx+2x-ln(b2-2b)=
1
2
x2-x-2lnx
-ln(b2-2b)(x>0),
∴F′(x)=x-1-
2
x
=
x2-x-2
x
=
(x-2)(x+1)
x
.                                (8分)
∴当0<x<2时,F′(x)<0,所以F(x)在(0,2)上单调递减;
当x>2时,F′(x)>0,所以F(x)在(2,+∞)上单调递增.
∴当x=2时,F(x)min=2-2-2ln2-ln(b2-2b)=-2ln2-ln(b2-2b),
∴要使在(1)的条件下,若f(x)>g(x)恒成立只需要F(x)min=-2ln2-ln(b2-2b)>0
即ln(b2-2b)<-2ln2=ln
1
4
(11分)
b2-2b>0
b2-2b<
1
4
?
b>2或b<0
2-
5
2
<b<
2+
5
2
?
2-
5
2
<b<0或2<b<
2+
5
2
(13分).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案