精英家教网 > 高中数学 > 题目详情
18.在数列{an}中,a1=1,an+1-an=2,则a31的值为(  )
A.67B.49C.62D.61

分析 由已知得数列{an}是首项为1,公差为2的等差数列,由此能求出a31的值.

解答 解:∵数列{an}中,a1=1,an+1-an=2,
∴数列{an}是首项为1,公差为2的等差数列,
∴a31=1+30×2=61.
故选:D.

点评 本题考查数列的第31项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.正△ABC两边AB,AC的中点分别为M,N,直线MN与△ABC外接圆的一个交点为P.
①若正△ABC的边长为a,求△PBC的面积;
②求$\frac{PB}{PC}$+$\frac{PC}{PB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}的前n和为Sn,若${S_n}={n^2}-2n$,则a4+a5=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在边长为1的正方形ABCD中,E,F分别是边BC,DC上的点,且$\overrightarrow{BE}=\frac{1}{4}\overrightarrow{BC}$,$\overrightarrow{DF}=-\overrightarrow{CF}$,则$\overrightarrow{AE}•\overrightarrow{AF}$=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|ax2-8x|(a>0).
(1)当a≤8时,求函数f(x)在区间[-1,1]上的最大值;
(2)设b∈R,若存在实数a,使得函数y=|f(x)-2|在区间[0,b]上单调递减,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\left\{\begin{array}{l}{x^2}+1(x≥0)\\-2x(x<0)\end{array}\right.$,求方程f(x)=10的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F2的直线交椭圆于P,Q两点,若∠F1PQ=45°,|PQ|=$\sqrt{2}|P{F_1}|$,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$-1D.2-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设向量$\overrightarrow a$=(2,sinθ),$\overrightarrow b$=(1,cosθ),θ为锐角.
(1 )若$\overrightarrow a$•$\overrightarrow b$=$\frac{13}{6}$,求sinθ+cosθ的值;
(2 )若$\overrightarrow a$∥$\overrightarrow b$,求tan(θ-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)=2sin(ωx+φ)-m,恒有f(x+$\frac{π}{2}$)=f(-x)成立,且f($\frac{π}{4}$)=-1,则实数m的值为(  )
A.±1B.±3C.-3或1D.-1或3

查看答案和解析>>

同步练习册答案