精英家教网 > 高中数学 > 题目详情
11.若复数z满足(z+1)i=2-i,则复数z的共轭复数在复平面上所对应点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由(z+1)i=2-i,利用复数代数形式的乘除运算求出z,则z的共轭复数可求,进一步求出复数z的共轭复数在复平面上所对应点的坐标,则答案可求.

解答 解:∵(z+1)i=2-i,
∴$z=\frac{2-2i}{i}=\frac{-i•(2-2i)}{-i•i}=-2-2i$.
则$\overline{z}=-2+2i$.
∴复数z的共轭复数在复平面上所对应点的坐标为:(-2,2),位于第二象限.
故选:B.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x+y+5≥0}\\{x-y≤0}\\{y≤0}\end{array}\right.$,则z=2x+4y-3的最大值是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0).
(1)若渐近线与圆(x-2)2+y2=1想切,求双曲线的离心率;
(2)若存在过右焦点F的直线与双曲线C相交于A,B两点且$\overrightarrow{AF}$=3$\overrightarrow{BF}$,求双曲线离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设计算法流程图,要求输入自变量x的值,输出函数$f(x)=\left\{\begin{array}{l}\frac{1}{2}{x^2}-5,x>0\\ 0,x=0\\ 2x+3,x<0\end{array}\right.$的值,并写出计算机程序.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知全集U=R,集合A={x|-2≤x≤5},B={x|a+1≤x≤2a-1},且A⊆∁UB,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个几何体的三视图如图所示,则这个几何体的体积为(  )
A.9B.10C.36D.72

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知动点到A(2,0)的距离是它到B(8,0)距离的一半,求动点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}的前n项和为Sn,点列(n,Sn)在函数f(x)=(x+2)2的图象上,数列{bn}满足:对任意的正整数n都有0<bn<an,且$\underset{lim}{n→∞}$$\frac{{a}_{n}}{{b}_{n}}$=2成立,则数列{bn}可能的一个通项公式是bn=n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1(a>3)的两个焦点分别为F1,F2.其离心率为$\frac{4}{5}$.椭圆上点M到F1的距离为2.点N是MF1的中点.O是椭圆的中心.求线段ON的长度.

查看答案和解析>>

同步练习册答案