精英家教网 > 高中数学 > 题目详情
已知f(x)=x3-3x+m在区间[0,2]上任取三个不同的数a,b,c,均存在以f(a),f(b),f(c)为边长的三角形,则m的取值范围是     .
m>6
f(x)=x3-3x+m,f'(x) =3x2-3,由f'(x)=0得到x=1或x=-1,在[0,2]上,函数先减小后增加,计算两端及最小值f(0)=m,f(2)=2+m,f(1)=-2+m.在[0,2]上任取三个不同的数a,b,c,均存在以f(a),f(b),f(c)为边的三角形,三个不同的数a,b,c对应的f(a),f(b),f(c)可以有两个相同.由三角形两边之和大于第三边,可知最小边长的二倍必须大于最大边长.
由题意知,f(1)=-2+m>0      ①
f(1)+f(1)>f(0),得到-4+2m>m      ②
f(1)+f(1)>f(2),得到-4+2m>2+m   ③
由①②③得到m>6,即为所求.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数的图象如图所示(其中是函数的导函数).下面四个图象中,的图象大致是( )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数yxcos x-sin x在下面哪个区间内是增函数 (  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f(x)=x3ax2bx+1的导数f′(x)满足f′(1)=
2af′(2)=-b,其中ab∈R.
①求曲线yf(x)在点(1,f(1))处的切线方程;②设g(x)=f′(x)ex,求g(x)的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求下列函数的单调区间.
(1)f(x)=x3x;(2)y=exx+1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)=-x3+x2+2ax.
(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.
(2)当0<a<2时,f(x)在[1,4]上的最小值为-,求f(x)在该区间上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

则f′(x)的解集为(    )
A.B.(-1,0)C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=ex+x-2,g(x)=ln x+x2-3.若实数a,b满足f(a)=0,g(b)=0,则  (  ).
A.g(a)<0<f(b)B.f(b)<0<g(a)
C.0<g(a)<f(b)D.f(b)<g(a)<0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义域为R的连续函数,对任意x都有,且其导函数满足,则当时,有(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案