我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且法向量为=(1,-2)的直线(点法式)方程为:1×(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比以上方法,在空间直角坐标系o-xyz中,经过点A(1,2,3)且法向量为=(-1,-2,1)的平面的方程为____________ .
(化简后用关于x,y,z的一般式方程表示)
x+2y-z-2=0
解析试题分析:根据法向量的定义,若为平面α的法向量,则⊥α,任取平面α内一点P(x,y,z),
则⊥,∵=(1-x,2-y,3-z),=(-1,-2,1),∴(x-1)+2(y-2)+(3-z)=0,即x+2y-z-2=0,
故答案为x+2y-z-2=0。
考点:本题主要考查类比推理的概念和方法,向量的坐标运算。
点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).由于平面向量与空间向量的坐标运算类似,因此可以利用求平面曲线方程的办法,通过构造向量,利用向量的运算确定空间平面方程。
科目:高中数学 来源: 题型:填空题
平面上有条直线, 这条直线任意两条不平行, 任意三条不共点, 记这条直线将平面分成部分, 则___________, 时,_________________.)(用表示).
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
设n为正整数,f(n)=1+++…+,计算得f(2)=,f(4)>2,f(8)>,f(16)>3,观察上述结果,可推测一般的结论为_______________________________.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
在平面几何里,已知直角△SAB的两边SA,SB互相垂直,且,则边上的高; 拓展到空间,如图,三棱锥的三条侧棱SB、SB、SC两两相互垂直,且,则点到面的距离
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
专家由圆x+y=a的面积S=a通过类比推理猜想椭圆的面积S=ab. 之后利用演绎推理证明了这个公式是对的! 在平面直角坐标系中, 点集A="{" (x, y)| }, 点集B="{(x," y)| , 则点集M="{(x," y)|x=x+x, y=y+y, (x, y)A, (x, y)B}所表示的区域的面积为_____________.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
如图所示,从中间阴影算起,图1表示蜂巢有1层只有一个室,图2表示蜂巢有2层共有7个室,图3表示蜂巢有3层共有19个室,图4表示蜂巢有4层共有37个室. 观察蜂巢的室的规律,指出蜂巢有n层时共有_______个室.
2107
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com