精英家教网 > 高中数学 > 题目详情
用单调性定义证明函数f(x)=
x+2
x-1
在(1,+∞)上单调递减.
考点:函数单调性的判断与证明
专题:函数的性质及应用
分析:利用函数单调性定义证明.
解答: 解:?1<x1<x2≤+∞,
则f(x1)-f(x2)=
x1+2
x1-1
-
x2+2
x2-1
=
2x1x2+3x2-3x1
(x1-1)(x2-1)

∵1<x1<x2<+∞,
∴x1-1>0,x2-1>0,x1x2>0,x2-x1>0,
∴f(x1)-f(x2)>0.
∴f(x1)>f(x2).
∴f(x)=在(1,+∞)上是单调减函数.
点评:熟练掌握函数单调性定义和证明方法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对向量
a
=(a1,a2),
b
=(b1,b2)定义一种运算“⊕”:a?b=(a1,a2)⊕(b1,b2)=(a1b1,a2b2),已知动点P,Q分别在曲线y=sinx和y=f(x)上运动,且
OQ
=m⊕
Op
+m(其中O为坐标原点),若向量
m
=(
1
2
,3),
n
=(
π
6
,0),则y=f(x)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,P,Q分别是线段(不包括端点)CC1,BD上的点,PQ∥ABC1D1,记CP=x,四面体PQA1B1的体积为y,则y关于x的函数大致图象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
x-y
3x
-
3y
-
x+y
3x
+
3y

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b均为大于1的自然数,函数f(x)=ab+asinx,g(x)=cosx+b,若存在实数k,使得f(k)=g(k),则ab=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=4x的焦点为F,点P(x,y)为该抛物线上的动点,又点A(-1,0),则
|PF|
|PA|
的取值范围是(  )
A、[
2
2
,1]
B、[
1
2
,1]
C、[
2
2
2
]
D、[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义域为R的偶函数,且对任意实数x,恒有f(x+1)=-f(x),已知x∈(0,1)时,f(x)=log
1
2
(1-x),则函数f(x)在(1,2)上(  )
A、是增函数,且f(x)<0
B、是增函数,且f(x)>0
C、是减函数,且f(x)<0
D、是减函数,且f(x)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知从一点P引出三条射线PA、PB、PC,且两两成60°角,那么直线PC与平面PAB所成角的余弦值是(  )
A、
1
2
B、
3
3
C、
2
2
D、
6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设g(x)=ex,f(x)=g[λx+(1-λ)a]-λg(x),其中a,λ是常数,且0<λ<1.
(1)求函数f(x)的最值;
(2)证明:对任意正数a,存在正数x,使不等式|
g(x)-1
x
-1|<a成立;
(3)设λ1>0,λ2>0,且λ12=1,证明:对任意正数a1a2都有a1 λ1a2 λ2≤λ1a12a2

查看答案和解析>>

同步练习册答案