精英家教网 > 高中数学 > 题目详情
10.如图所示的正四面体A-BCD中,截面ADM将其分成体积相等的两部分,则AB与截面ADM所成角为(  )
A.30°B.45°C.60°D.无法确定

分析 由已知M是BC的中点,从而AM⊥BC,DE⊥BC,进而BC⊥平面AMD,∠BAM是直线AB与截面ADM所成角,由此能求出AB与截面ADM所成角的大小.

解答 解:∵如图所示的正四面体A-BCD中,截面ADM将其分成体积相等的两部分,
∴M是BC的中点,
∵AB=AC=BD=DC,∴AM⊥BC,DE⊥BC,
∵AM∩DM=M,∴BC⊥平面AMD,
∴∠BAM是直线AB与截面ADM所成角,
∵BM=$\frac{1}{2}AB$,BM⊥AM,
∴sin∠BAM=$\frac{BM}{AB}$=$\frac{1}{2}$,∴∠BAM=30°.
∴AB与截面ADM所成角为30°.
故选:A.

点评 本题考查线面角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知△ABC的三个顶点的坐标为A(1,0),B(3,2),C(2,4).求:
(1)点D的坐标,使四边形ABCD是平行四边形;
(2)点C关于直线AB对称点的坐标;
(3)△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}满足an+1=2an(n∈N*),其前n项和为Sn,则$\frac{S_5}{a_5}$=(  )
A.$\frac{15}{16}$B.$\frac{31}{16}$C.$\frac{15}{32}$D.$\frac{31}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足a1=9,其前n项和为Sn,对n∈N*,n≥2,都有Sn=3(Sn-1+3)
(Ⅰ)求数列{an}的通项;
(Ⅱ)求证:数列{Sn+$\frac{9}{2}$}是等比数列;
(Ⅲ)若bn=-2log3an+20,n∈N*,求数列{bn}的前n项和Tn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知sinα=$\frac{1}{3}$,α$∈(0,\frac{π}{2})$.
(Ⅰ)求cos2α的值;
(Ⅱ)求sin(2α+$\frac{π}{3}$)的值;
(Ⅲ)求tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.关于x的不等式|x+1|+|x-3|<a的解集包含(1,4),则实数a的取值范围是(6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}满足:a1=$\frac{1}{2}$,且an+1=an+an2(n∈N*).
(1)求证;an<an+1≤3an2
(2)令bn=an+1,求证:1<$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{n}}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}满足an=(n2+2n)sin$\frac{(2n-1)π}{2}$,则{an}的前100项的和为(  )
A.-2016B.-5150C.-5050D.-2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设定义在R上的奇函数y=f(x),满足对任意t∈R都有$f({\frac{1}{2}-t})=f({\frac{1}{2}+t})$,且x∈[0,$\frac{1}{2}$]时,f(x)=-x2,则f(3)+f(-$\frac{3}{2}$)的值等于(  )
A.-$\frac{1}{2}$B.-$\frac{1}{3}$C.-$\frac{1}{4}$D.-$\frac{1}{5}$

查看答案和解析>>

同步练习册答案