【题目】如图,在五面体
中,四边形
是边长为
的正方形,平面
⊥平面
,
.
![]()
(Ⅰ) 求证:
;
(Ⅱ) 求证:平面
⊥平面
;
(Ⅲ) 在线段
上是否存在点
,使得
⊥平面
? 说明理由.
【答案】(Ⅰ)详见解析(Ⅱ)详见解析(Ⅲ)存在点N符合题意
【解析】
(Ⅰ) 推导出AB∥CD.由此能证明CD∥平面ABFE.(Ⅱ) 推导出AE⊥DE,AB⊥AD,从而AB⊥平面ADE,进而 AB⊥DE,由此能证明DE⊥平面ABFE,从而平面ABFE⊥平面CDEF.(Ⅲ)取CD的中点N,连接FN,推导出四边形EDNF是平行四边形,从而FN∥DE,由DE⊥平面ABFE,能证明FN⊥平面ABFE.
证明:(Ⅰ)在五面体
中,因为四边形
是正方形,
所以
.
因为
平面
,
平面
,
所以
平面
.
(Ⅱ)因为
,
,
所以
,所以
,即
.
因为四边形
是正方形,所以
.
因为平面
⊥平面
,平面
平面
,
![]()
所以
⊥平面
.
因为
,所以
⊥
.
因为
所以
⊥平面![]()
因为
,所以平面
⊥平面
.
(Ⅲ)在线段
上存在点
,使得
⊥平面
.
证明如下:
取
的中点
,连接
.
![]()
由(Ⅰ)知,
,
,
所以
.
因为![]()
所以
.
所以四边形
是平行四边形.
所以
.
由(Ⅱ)知,
⊥平面
,
所以
.
科目:高中数学 来源: 题型:
【题目】从某工厂生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
![]()
(1)求这1000件产品质量指标值的样本平均数
和样本方差
(同一组数据用该区间的中点值作代表)
(2)由频率分布直方图可以认为,这种产品的质量指标值
服从正态分布
,其中以
近似为样本平均数
,
近似为样本方差
.
(ⅰ)利用该正态分布,求
;
(ⅱ)某用户从该工厂购买了100件这种产品,记
表示这100件产品中质量指标值为于区间(127.6,140)的产品件数,利用(ⅰ)的结果,求
.
附:
.若
,则
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园.
(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?
(2)每名学生都被随机分配到其中的一个公园,设
分别表示5名学生分配到王城公园和牡丹公园的人数,记
,求随机变量
的分布列和数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
过点
,且离心率为
.设
为椭圆
的左、右顶点,P为椭圆上异于
的一点,直线
分别与直线
相交于
两点,且直线
与椭圆
交于另一点
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)求证:直线
与
的斜率之积为定值;
(Ⅲ)判断三点
是否共线,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的奇函数,当x>0时,
.
(1)求f(x)的解析式;
(2)设x∈[1,2]时,函数
,是否存在实数m使得g(x)的最小值为6,若存在,求m的取值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为考察某动物疫苗预防某种疾病的效果,现对200只动物进行调研,并得到如下数据:
未发病 | 发病 | 合计 | |
未注射疫苗 | 20 | 60 | 80 |
注射疫苗 | 80 | 40 | 120 |
合计 | 100 | 100 | 200 |
(附:
)
| 0.05 | 0.01 | 0.005 | 0.001 |
| 3.841 | 6.635 | 7.879 | 10.828 |
则下列说法正确的:( )
A.至少有99.9%的把握认为“发病与没接种疫苗有关”
B.至多有99%的把握认为“发病与没接种疫苗有关”
C.至多有99.9%的把握认为“发病与没接种疫苗有关”
D.“发病与没接种疫苗有关”的错误率至少有0.01%
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com