精英家教网 > 高中数学 > 题目详情
如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,又BC1⊥AC,过C1作C1H⊥底面ABC,垂足为H,则点H一定在( )

A.直线AC上
B.直线AB上
C.直线BC上
D.△ABC的内部
【答案】分析:由已知中斜三棱柱ABC-A1B1C1中,∠BAC=90°,又BC1⊥AC,由线面垂直的判定定理可得AC⊥平面ABC1,故AC⊥平面ABC1内的任一直线,则当过C1作C1H⊥底面ABC时,垂足为H,C1H?平面ABC1,进而可以判断出H点的位置.
解答:解:∵在斜三棱柱ABC-A1B1C1中,∠BAC=90°,
∴AB⊥AC
又∵BC1⊥AC,BC1∩AB=B
∴AC⊥平面ABC1
则C1作C1H⊥底面ABC,
故C1H?平面ABC1
故点H一定在直线AB上
故选B
点评:本题考查的知识点是棱柱的结构特征,线面垂直的判定定理和性质定理,其中熟练掌握线面垂直的性质定理和判定定理,并熟练掌握它们之间的相互转化是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在斜三棱柱ABC-A1B1C1中,∠A1AB=∠A1AC,AB=AC,A1A=A1B=a,侧面B1BCC1与底面ABC所成的二面角为120°,E、F分别是棱B1C1、A1A的中点
(Ⅰ)求A1A与底面ABC所成的角;
(Ⅱ)证明A1E∥平面B1FC;
(Ⅲ)求经过A1、A、B、C四点的球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在斜三棱柱ABC-A1B1C1中,AC=BC,AC⊥BC.侧面A1ABB1是边长为a的菱形,且垂直于底面ABC,∠A1AB=60°,E,F分别是AB1,BC的中点.  
(1)求证:直线EF∥平面A1ACC1;   
(2)在线段AB上确定一点G,使平面EFG⊥平面ABC,并给出证明;  
(3)记三棱锥A-BCE的体积为V,且V∈[
32
,12]
,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,又BC1⊥AC,过C1作C1H⊥底面ABC,垂足为H,则点H一定在(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)如图,在斜三棱柱ABC-A1B1C1中 AB=BC=2,∠ABC=120°,又顶点A1在底面ABC上的射影落在AC上,侧棱AA1与底面成60°的角,D为AC的中点.
(1)求证:AA1⊥BD;
(2)若面A1DB⊥面DC1B,求侧棱AA1之长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在斜三棱柱ABC-A'B'C'中,∠ABC=90°,则侧面A'ACC'⊥侧面ABC,又AA'和底面所成60°的角,且AA'=2a,AB=BC=
2
a

(1)求平面ABB'A'与底面ABC所成的角的正切值;
(2)求侧面BB'C'C的面积.

查看答案和解析>>

同步练习册答案