精英家教网 > 高中数学 > 题目详情

已知等差数列{an}中,a2=-6,S4=-20.
(1)求数列{an}的通项公式;
(2)设Sn是数列{an}的前n项和,求Sn的最小值.

解:(1)设等差数列{an}的公差为d,则由题意可得 a1+d=6,4a1+=20,解得 a1=-8,d=2,
故数列{an}的通项公式an=-8+(n-1)2=2n-10.
(2)由题意可得 Sn=-8n+×2=n2-9n=-
再由n为正整数可得,当n=4或5时,Sn 取得最小值为-20.
分析:(1)设等差数列{an}的公差为d,则由题意可得 a1+d=6,4a1+=20,求出首项和公差d的值,即可得到数列{an}的通项公式.
(2)由题意可得 Sn=-8n+×2=n2-9n=-,利用二次函数的性质求出Sn的最小值.
点评:本题主要考查等差数列的通项公式,等差数列的前n项和公式的应用,二次函数的性质,求出首项和公差d的值,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案