精英家教网 > 高中数学 > 题目详情
16.从集合{0,1,2,3,4,5}中任取两个互不相等的数a,b组成复数a+bi,其中虚数有(  )个.
A.36B.30C.25D.20

分析 由题意可知b有五种不同取法,a也有五种不同取法,结合分步乘法计数原理得答案.

解答 解:要构成虚数a+bi,则b≠0,
∴b可取1,2,3,4,5五个数字,有五种取法,
又a,b为互不相等得两个数字,
故a有五种取法.
∴由分别乘法原理可知,构成虚数的个数为5×5=25个.
故选:C.

点评 本题考查分步乘法计数原理,考查复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.某校有男生450人,女生500人,现用分层抽样的方法从全校学生中抽取一个容量为95的样本,则抽出的男生人数是(  )
A.45B.50C.55D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$C:\frac{x^2}{4}+{y^2}=1$,如图所示点A(x1,y1),B(x2,y2),P(x3,y3)为椭圆上任意三点.
(Ⅰ)若$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OP}=\overrightarrow 0$,是否存在实数λ,使得代数式x1x2+λy1y2为定值.若存在,求出实数λ和x1x2+λy1y2的值;若不存在,说明理由.
(Ⅱ)若$若\overrightarrow{OA}•\overrightarrow{OB}=0$,求三角形OAB面积的最大值;
(Ⅲ)满足(Ⅱ),且在三角形OAB面积取得最大值的前提下,若线段PA,PB与椭圆长轴和短轴交于点E,F(E,F不是椭圆的顶点).判断四边形ABFE的面积是否为定值.若是,求出定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=ax+b的图象如图所示,其中a,b为常数,则下列结论正确的是(  )
A.0<a<1,b>0B.0<a<1,b<0C.a>1,b<0D.a>1,b>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,若f(a)+f(-1)=3,则a=e或$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A,B,C的对边分别为a,b,c,若a2+b2+4$\sqrt{2}$=c2,ab=4,则$\frac{sinC}{ta{n}^{2}A•sin2B}$的最小值是$\frac{3\sqrt{2}}{2}$+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.16.如图所示,在正方形ABCD中,已知|$\overrightarrow{AB}$|=2,若N为正方形内(含边界)任意一点,则$\overrightarrow{AB}$•$\overrightarrow{AN}$的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.以椭圆3x2+13y2=39的焦点为顶点,以$y=±\frac{1}{2}x$为渐近线的双曲线方程为$\frac{{x}^{2}}{10}-\frac{{y}^{2}}{\frac{5}{2}}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.端午节小长假期间,张洋与几位同学从天津乘火车到大连去旅游,若当天从天津到大连的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响,则这三列火车恰好有两列正点到达的概率是0.398.

查看答案和解析>>

同步练习册答案