分析 由已知利用余弦定理可求cosC,结合范围C∈(0,π),可求C的值,可得B=$\frac{π}{4}$-A,利用三角函数恒等变换的应用,基本不等式可求tan2Acos2A=3-(2cos2A+$\frac{1}{co{s}^{2}A}$)≤3-2$\sqrt{2}$,即可得解.
解答 解:∵a2+b2+4$\sqrt{2}$=c2,ab=4,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{-4\sqrt{2}}{2×4}$=-$\frac{\sqrt{2}}{2}$,
∵C∈(0,π),
∴C=$\frac{3π}{4}$,B=$\frac{π}{4}$-A,
∵tan2Acos2A=3-(2cos2A+$\frac{1}{co{s}^{2}A}$)≤3-2$\sqrt{2}$,
∴$\frac{sinC}{ta{n}^{2}A•sin2B}$=$\frac{\frac{\sqrt{2}}{2}}{ta{n}^{2}A•cos2A}$≥$\frac{\frac{\sqrt{2}}{2}}{3-2\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$+2,则$\frac{sinC}{ta{n}^{2}A•sin2B}$的最小值是$\frac{3\sqrt{2}}{2}$+2,当且仅当2cos2A=$\frac{1}{co{s}^{2}A}$,
故答案为:$\frac{3\sqrt{2}}{2}$+2.
点评 本题主要考查了余弦定理,三角函数恒等变换的应用,基本不等式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | y=f(x)与y=f(t)表示同一个函数 | |
| B. | y=f(x)与y=f(x+1)不可能是同一函数 | |
| C. | f(x)=1与f(x)=x0表示同一函数 | |
| D. | 定义域和值域都相同的两个函数是同一个函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\left.\begin{array}{l}α⊥β\\ m⊥β\end{array}\right\}⇒m∥α$ | B. | $\left.\begin{array}{l}α⊥β\\ m?α\end{array}\right\}⇒m⊥β$ | C. | $\left.\begin{array}{l}m∥α\\ m∥β\end{array}\right\}⇒α∥β$ | D. | $\left.\begin{array}{l}α∥β\\ m?α\end{array}\right\}⇒m∥β$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2100 | B. | 24950 | C. | 25050 | D. | 25151 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{6}{5}$ | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{30}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 420 | B. | 240 | C. | 360 | D. | 540 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com