9£®ÒÑÖªÖ±ÏßmºÍ²»Í¬µÄÆ½Ãæ¦Á£¬¦Â£¬ÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\left.\begin{array}{l}¦Á¡Í¦Â\\ m¡Í¦Â\end{array}\right\}⇒m¡Î¦Á$B£®$\left.\begin{array}{l}¦Á¡Í¦Â\\ m?¦Á\end{array}\right\}⇒m¡Í¦Â$C£®$\left.\begin{array}{l}m¡Î¦Á\\ m¡Î¦Â\end{array}\right\}⇒¦Á¡Î¦Â$D£®$\left.\begin{array}{l}¦Á¡Î¦Â\\ m?¦Á\end{array}\right\}⇒m¡Î¦Â$

·ÖÎö ÀûÓÃÆ½ÃæÓëÆ½ÃæÆ½ÐС¢´¹Ö±µÄÐÔÖÊ£¬ÏßÃæ´¹Ö±µÄÐÔÖʼ°ÃæÃæÆ½ÐкÍÏßÃæ´¹Ö±µÄÅж¨¶¨Àí£¬ÎÒÃǶÔÌâÄ¿ÖеÄËĸö´ð°¸ÖðÒ»½øÐзÖÎö£¬¼´¿ÉµÃµ½ÕýÈ·µÄ½áÂÛ£®

½â´ð ½â£º¶ÔÓÚA£¬Èô$\left\{\begin{array}{l}{¦Á¡Í¦Â}\\{m¡Í¦Â}\end{array}\right.$⇒m¡Î¦Á»òm?¦Á£¬¹Ê´í£¬
¶ÔÓÚB£¬Èô$\left\{\begin{array}{l}{¦Á¡Í¦Â}\\{m?¦Á}\end{array}\right.$£¬ÔòmÓë¦Â²»Ò»¶¨´¹Ö±£¨ÈçÏÂͼËùʾ£©£¬¹Ê´í
¶ÔÓÚC£¬Èô$\left\{\begin{array}{l}{m¡Î¦Á}\\{m¡Î¦Â}\end{array}\right.$£¬Ôò¦Á¡¢¦Â²»Ò»¶¨Æ½ÐУ¨ÈçÏÂͼËùʾ£©£¬¹Ê´í£®

¶ÔÓÚD£¬Èô$\left\{\begin{array}{l}{¦Á¡Î¦Â}\\{m?¦Á}\end{array}\right.$⇒m¡Î¦Â£¬¸ù¾ÝÃæÃæÆ½ÐеÄÐÔÖÊ£¬¿ÉÅж¨DÕýÈ·£»
¹ÊÑ¡£ºD

µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊǿռäÖÐÖ±ÏßÓëÆ½ÃæÖ®¼äµÄλÖùØÏµ£¬ÊìÁ·ÕÆÎÕ¿Õ¼äÏßÃæÖ®¼ä¹ØÏµµÄÅж¨·½·¨ºÍÐÔÖʶ¨Àí£¬Êǽâ´ð´ËÀàÎÊÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢CËù¶Ô±ßµÄ³¤·Ö±ðΪa¡¢b¡¢c£¬Èôb=1£¬A=2B£¬Ôò$\frac{a}{cosB}$µÄÖµµÈÓÚ£¨¡¡¡¡£©
A£®3B£®$\frac{1}{2}$C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©µÄ½¹µãΪF£¬Ö±Ïßy=4ÓëyÖáµÄ½»µãΪP£¬ÓëÅ×ÎïÏßCµÄ½»µãΪQ£¬ÇÒ|QF|=2|PQ|£¬¹ýFµÄÖ±ÏßlÓëÅ×ÎïÏßCÏཻÓÚA£¬BÁ½µã£®
£¨1£©ÇóCµÄ·½³Ì£»
£¨2£©ÉèABµÄ´¹Ö±Æ½·ÖÏßl'ÓëCÏཻÓÚM£¬NÁ½µã£¬ÊÔÅжÏA£¬M£¬B£¬NËĵãÊÇ·ñÔÚͬһ¸öÔ²ÉÏ£¿ÈôÔÚ£¬Çó³ölµÄ·½³Ì£»Èô²»ÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®¹«¹²Æû³µÉÏÓÐ4λ³Ë¿Í£¬ÆäÖÐÈÎÒâÁ½È˶¼²»ÔÚͬһ³µÕ¾Ï³µ£¬Æû³µÑØÍ¾Í£¿¿6¸ö³µÕ¾£¬ÄÇÕâ4λ³Ë¿Í²»Í¬µÄϳµ·½Ê½¹²ÓÐ360ÖÖ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=ax+bµÄͼÏóÈçͼËùʾ£¬ÆäÖÐa£¬bΪ³£Êý£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®0£¼a£¼1£¬b£¾0B£®0£¼a£¼1£¬b£¼0C£®a£¾1£¬b£¼0D£®a£¾1£¬b£¾0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=logax£¨a£¾0£¬a¡Ù1£©£®
£¨1£©µ±a=2ʱ£¬Çó¹ØÓÚʵÊýmµÄ²»µÈʽf£¨3m-2£©£¼f£¨2m+5£©µÄ½â¼¯£®
£¨2£©Çóʹ$f£¨x-\frac{2}{x}£©={log_a}\frac{7}{2}$³ÉÁ¢µÄxÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬Èôa2+b2+4$\sqrt{2}$=c2£¬ab=4£¬Ôò$\frac{sinC}{ta{n}^{2}A•sin2B}$µÄ×îСֵÊÇ$\frac{3\sqrt{2}}{2}$+2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖª¸´ÊýzÂú×ã|z|=1£¬ÓÖu=z2-i+1£¬Ôò|u|µÄȡֵ·¶Î§ÊÇ[$\sqrt{2}$-1£¬$\sqrt{2}$+1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖª10¼þ²úÆ·ÖÐÓÐ3¼þ´ÎÆ·£¬ÈôÈÎÒâ³éÈ¡3¼þ½øÐмìÑ飬ÔòÆäÖÐÖÁÉÙÓÐÒ»¼þ´ÎÆ·µÄ¸ÅÂÊÊÇ$\frac{17}{24}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸