分析 (1)由a=2得函数f(x)在定义域(0,+∞)上单调递增,把不等式f(3m-2)<f(2m+5)化为$\left\{\begin{array}{l}{3m-2>0}\\{2m+5>0}\\{3m-2<2m+5}\end{array}\right.$,求出解集即可;
(2)由$f(x-\frac{2}{x})={log_a}\frac{7}{2}$得出方程x-$\frac{2}{x}$=$\frac{7}{2}$,求出方程的解并检验是否满足条件.
解答 解:(1)由a=2得,函数f(x)=log2x在定义域(0,+∞)上单调递增,
所以不等式f(3m-2)<f(2m+5)可化为:
$\left\{\begin{array}{l}{3m-2>0}\\{2m+5>0}\\{3m-2<2m+5}\end{array}\right.$,
解得$\frac{2}{3}$<m<7;
(2)由$f(x-\frac{2}{x})={log_a}\frac{7}{2}$,
得loga(x-$\frac{2}{x}$)=loga$\frac{7}{2}$,
即x-$\frac{2}{x}$=$\frac{7}{2}$,
化简得2x2-7x-4=0,
解得x=-$\frac{1}{2}$或x=4;
检验得x=-$\frac{1}{2}$,x=4都满足题意,
故x=-$\frac{1}{2}$或x=4;.
点评 本题考查了对数函数的图象与性质的应用问题,也考查了不等式的解法与应用问题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{3}{4}$ | B. | -1 | C. | $-\frac{7}{4}$ | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\left.\begin{array}{l}α⊥β\\ m⊥β\end{array}\right\}⇒m∥α$ | B. | $\left.\begin{array}{l}α⊥β\\ m?α\end{array}\right\}⇒m⊥β$ | C. | $\left.\begin{array}{l}m∥α\\ m∥β\end{array}\right\}⇒α∥β$ | D. | $\left.\begin{array}{l}α∥β\\ m?α\end{array}\right\}⇒m∥β$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2100 | B. | 24950 | C. | 25050 | D. | 25151 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com