精英家教网 > 高中数学 > 题目详情
2.正方形ABCD边长为2,中心为O,直线l经过中心O,交AB于M,交CD于N,P为平面上一点,且$2\overrightarrow{OP}=λ\overrightarrow{OB}+(1-λ)\overrightarrow{OC}$,则$\overrightarrow{PM}•\overrightarrow{PN}$的最小值是(  )
A.$-\frac{3}{4}$B.-1C.$-\frac{7}{4}$D.-2

分析 根据$2\overrightarrow{OP}=λ\overrightarrow{OB}+(1-λ)\overrightarrow{OC}$得出2$\overrightarrow{OP}$的终点在线段BC上,即|2$\overrightarrow{OP}$|≥1,求出${\overrightarrow{OP}}^{2}$≥$\frac{1}{4}$;又O是MN的中点,得出$\overrightarrow{OM}$+$\overrightarrow{ON}$=$\overrightarrow{0}$,$\overrightarrow{OM}$•$\overrightarrow{ON}$≥$\sqrt{2}$×$\sqrt{2}$×cosπ,求$\overrightarrow{PM}•\overrightarrow{PN}$=($\overrightarrow{OM}$-$\overrightarrow{OP}$)•($\overrightarrow{ON}$-$\overrightarrow{OP}$)的最小值即可.

解答 解:根据题意,$2\overrightarrow{OP}=λ\overrightarrow{OB}+(1-λ)\overrightarrow{OC}$,

∴2$\overrightarrow{OP}$的终点在线段BC上,
∴|2$\overrightarrow{OP}$|≥1,
∴|$\overrightarrow{OP}$|≥$\frac{1}{2}$,
∴${\overrightarrow{OP}}^{2}$≥$\frac{1}{4}$;
又O是MN的中点,
∴$\overrightarrow{OM}$+$\overrightarrow{ON}$=$\overrightarrow{0}$,
∴$\overrightarrow{OM}$•$\overrightarrow{ON}$≥$\sqrt{2}$×$\sqrt{2}$×cosπ=-2,
∴$\overrightarrow{PM}•\overrightarrow{PN}$=($\overrightarrow{OM}$-$\overrightarrow{OP}$)•($\overrightarrow{ON}$-$\overrightarrow{OP}$)
=$\overrightarrow{OM}$•$\overrightarrow{ON}$-$\overrightarrow{OP}$•($\overrightarrow{OM}$+$\overrightarrow{ON}$)+${\overrightarrow{OP}}^{2}$≥-2-0+$\frac{1}{4}$=-$\frac{7}{4}$,
∴$\overrightarrow{PM}$•$\overrightarrow{PN}$的最小值是-$\frac{7}{4}$.
故选:C.

点评 本题考查了平面向量的数量积运算性质、向量的三角形法则、向量共线定理应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.现有10道题,期中6道难题,4道简单题,张同学从中任选3道题解答.已知所取3道题中有2道难题,1道简单题.设张同学答对每道难题的概率都是$\frac{2}{5}$,答对每道简单题的概率都是$\frac{4}{5}$,且各题答对与否相互独立,用X表示张同学答对题的个数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,已知斜率为-1的直线l与椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相交于A,B两点,且AB的中点为M(2,1)
(1)求椭圆的离心率;
(2)设椭圆的右焦点为F,且AF•BF=5,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知平行四边形ABCD中,$\overrightarrow{AD}$=$\overrightarrow a$,$\overrightarrow{AB}$=$\overrightarrow b$,M为AB中点,N为BD靠近B的三等分点.
(1)用基底$\overrightarrow a$,$\overrightarrow b$表示向量$\overrightarrow{MC}$,$\overrightarrow{NC}$;
(2)求证:M、N、C三点共线.并证明:CM=3MN.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.公共汽车上有4位乘客,其中任意两人都不在同一车站下车,汽车沿途停靠6个车站,那这4位乘客不同的下车方式共有360种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的前n项和为Sn,且a4=8,a6=12.
(1)求数列{an}的通项公式;
(2)若Sn=20,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=logax(a>0,a≠1).
(1)当a=2时,求关于实数m的不等式f(3m-2)<f(2m+5)的解集.
(2)求使$f(x-\frac{2}{x})={log_a}\frac{7}{2}$成立的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.随着手机使用的不断普及,现在全国各地的中小学生携带手机进入校园已经成为了普遍的现象,也引起了一系列的问题.然而,是堵还是疏,就摆在了我们学校老师的面前.某研究型学习小组调查研究“中学生使用手机对学习的影响”,部分统计数据如下表:
不使用手机使用手机合计
学习成绩优秀人数18725
学习成绩不优秀人数61925
合计242650
参考数据:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$,其中n=a+b+c+d
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
(1)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用手机对学习有影响?
(2)研究小组将该样本中使用手机且成绩优秀的7位同学记为A组,不使用手机且成绩优秀的18位同学记为B组,计划从A组推选的2人和B组推选的3人中,随机挑选两人来分享学习经验.求挑选的两人中一人来自A组、另一人来自B组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{2}{x}$+alnx-2,曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+3垂直.
(1)求实数a的值;
(2)记g(x)=f(x)+x-b(b∈R),若函数g(x)在区间[e-1,e]上有两个零点,求实数b的取值范围;
(3)若不等式πf(x)>($\frac{1}{π}$)1+x-lnx在|t|≤2时恒成立,求实数x的取值范围.

查看答案和解析>>

同步练习册答案