精英家教网 > 高中数学 > 题目详情
10.已知平行四边形ABCD中,$\overrightarrow{AD}$=$\overrightarrow a$,$\overrightarrow{AB}$=$\overrightarrow b$,M为AB中点,N为BD靠近B的三等分点.
(1)用基底$\overrightarrow a$,$\overrightarrow b$表示向量$\overrightarrow{MC}$,$\overrightarrow{NC}$;
(2)求证:M、N、C三点共线.并证明:CM=3MN.

分析 (1)利用向量线性运算,直接计算.
(2)(1)得$\overrightarrow{NC}=\frac{2}{3}\overrightarrow{MC}$⇒$\overrightarrow{MC}-\overrightarrow{MN}=\frac{2}{3}\overrightarrow{MC}$⇒$\overrightarrow{MN}=\frac{1}{3}\overrightarrow{MC}$;即可得证.

解答 解:(1)$\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{BC}=\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}$=$\frac{1}{2}\overrightarrow{b}+\overrightarrow{a}$;
$\overrightarrow{NC}=\overrightarrow{NB}+\overrightarrow{BC}=\frac{1}{3}\overrightarrow{DB}+\overrightarrow{AD}$=$\frac{1}{3}(\overrightarrow{AB}-\overrightarrow{AD})+\overrightarrow{AD}$
=$\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$=$\frac{1}{3}\overrightarrow{b}+\frac{2}{3}\overrightarrow{a}$;
(2)由(1)得$\overrightarrow{NC}=\frac{2}{3}\overrightarrow{MC}$⇒$\overrightarrow{MC}-\overrightarrow{MN}=\frac{2}{3}\overrightarrow{MC}$⇒$\overrightarrow{MN}=\frac{1}{3}\overrightarrow{MC}$;
∴M、N、C三点共线.且CM=3MN.

点评 本题考查了向量的线性运算,即向量的基本定理,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.角A是直角△ABC的一个内角,且$sinA=\frac{7}{8}$,则cosA=$\frac{\sqrt{15}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.二次函数y=x2-2x-2的单调减区间是(  )
A.(1,+∞)B.(-∞,1)C.(0,1)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设{an}是各项均不相等的数列,Sn为它的前n项和,满足λnan+1=Sn+1(n∈N+,λ∈R).
(1)若a1=1,且a1,a2,a3成等差数列,求λ的值;
(2)若{an}的各项均不相等,问当且仅当λ为何值时,a2,a3,…,an,…成等差数列?试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知过点P(-1,0)的直线l与抛物线y2=4x相交于A(x1,y1)、B(x2,y2)两点.
(Ⅰ)求直线l倾斜角的取值范围;
(Ⅱ)是否存在直线l,使A、B两点都在以M(5,0)为圆心的圆上,若存在,求出此时直线及圆的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,x>0}\\{\frac{1}{3^x},x≤0}\end{array}}\right.$,则$f(f(\frac{1}{4}))$=(  )
A.9B.$\frac{1}{9}$C.$\frac{2}{9}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.正方形ABCD边长为2,中心为O,直线l经过中心O,交AB于M,交CD于N,P为平面上一点,且$2\overrightarrow{OP}=λ\overrightarrow{OB}+(1-λ)\overrightarrow{OC}$,则$\overrightarrow{PM}•\overrightarrow{PN}$的最小值是(  )
A.$-\frac{3}{4}$B.-1C.$-\frac{7}{4}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,内角A,B,C的对边分别是a,b,c,则a2-b2=$\sqrt{3}$bc,sinC=$\sqrt{3}$sinB则C=(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线y=x2和直线l:y=kx+m(m>0)交于两点A、B,当$\overrightarrow{OA}•\overrightarrow{OB}=2$时,直线l过定点(0,2);当m=$\frac{1}{4}$时,以AB为直径的圆与直线$y=-\frac{1}{4}$相切.

查看答案和解析>>

同步练习册答案