分析 将直线代入抛物线方程,利用韦达定理及向量数量积的坐标运算,即可求得m的值,求得直线l的方程求得直线l过点(0,2);
利用中点坐标公式求得圆M的圆心,求得切点坐标,根据向量的数量积的坐标运算,即可求得m的值.
解答 解:设A(x1,y1),B(x2,y2),$\left\{\begin{array}{l}{y={x}^{2}}\\{y=kx+m}\end{array}\right.$,整理得:x2-kx-m=0,
则x1+x2=k,x1x2=-m,
y1y2=(x1x2)2=m2,y1+y2=k(x1+x2)+2m=k2+2m,
由$\overrightarrow{OA}•\overrightarrow{OB}=2$,则x1x2+y1y2=m2-m=2,即m2-m-2=0,解得:m=-1或m=2,
由m>0,则m=2,
直线l:y=kx+2,
∴直线l过点(0,2),
设以AB为直径的圆的圆心M(x,y),圆M与$y=-\frac{1}{4}$相切于P,
由x=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{k}{2}$,则P($\frac{k}{2}$,-$\frac{1}{4}$),
由题意可知:$\overrightarrow{PA}$•$\overrightarrow{PB}$=0,即(x1-$\frac{k}{2}$,y1+$\frac{1}{4}$)•(x2-$\frac{k}{2}$,y2+$\frac{1}{4}$)=0,
整理得:x1x2-$\frac{k}{2}$(x1+x2)+$\frac{{k}^{2}}{4}$+y1y2+$\frac{1}{4}$(y1+y2)+$\frac{1}{16}$=0,
代入整理得:m2-$\frac{m}{2}$+$\frac{1}{16}$=0,解得:m=$\frac{1}{4}$,
∴当m=$\frac{1}{4}$,以AB为直径的圆与直线$y=-\frac{1}{4}$相切.
故答案为:(0,2),$\frac{1}{4}$.
点评 本题考查椭圆的性质,直线与抛物线的位置关系,考查韦达定理,中点坐标公式,向量数量积的坐标运算,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 不使用手机 | 使用手机 | 合计 | |
| 学习成绩优秀人数 | 18 | 7 | 25 |
| 学习成绩不优秀人数 | 6 | 19 | 25 |
| 合计 | 24 | 26 | 50 |
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com