精英家教网 > 高中数学 > 题目详情
5.若星期一的所温为20℃,人星期二开始,每天的气温与前一天相比,仅等可能存在三种情形:“升1℃”、“持平”、“降1℃”,则星期五时气温也为20℃的概率为$\frac{19}{81}$.

分析 由题意列表求出基本事件总数n=81,并利用列举法求出其中星期五时气温也为20℃的包含的基本事件有m=19个,由此能求出星期五时气温也为20℃的概率.

解答 解:由题意列表如下:(单位:℃)

星期一星期二星期三星期四星期五
2019181716
17
18
1817
18
19
1918
19
20
191817
18
19
1918
19
20
2019
20
21
201918
19
20
2019
20
21
2120
21
22
20191817
18
19
1918
19
20
2019
20
21
201918
19
20
2019
20
21
2120
21
22
212019
20
21
2120
21
22
2221
22
23
21201918
19
20
2019
20
21
2120
21
22
212019
20
21
2120
21
22
2221
22
23
222120
21
22
2221
22
23
2322
23
24
由表知基本事件总数n=81,
其中星期五时气温也为20℃的包含的基本事件有m=19个,
故星期五时气温也为20℃的概率p=$\frac{19}{81}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,x>0}\\{\frac{1}{3^x},x≤0}\end{array}}\right.$,则$f(f(\frac{1}{4}))$=(  )
A.9B.$\frac{1}{9}$C.$\frac{2}{9}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点A(2,3),B(-3,-2),若直线l:y=k(x-1)+1与线段AB(包含端点)相交,则k的取值范围是(-∞,$\frac{3}{4}$)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.$\int_0^2{(\sqrt{1-{{(x-1)}^2}}}-x)dx$=$\frac{π}{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线y=x2和直线l:y=kx+m(m>0)交于两点A、B,当$\overrightarrow{OA}•\overrightarrow{OB}=2$时,直线l过定点(0,2);当m=$\frac{1}{4}$时,以AB为直径的圆与直线$y=-\frac{1}{4}$相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x3-3x2-9x+2.
(1)求函数f(x)的单调区间;
(2)求函数f(x)在区间[-1,m](m>-1)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.现有10个数,它们能构成一个以2为首项,-2为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是(  )
A.$\frac{1}{10}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A、B、C的对边分别为a,b,c,且b=1,ccosAcosC=csin(A+B)sinA-sinC
(1)求角B的大小;
(2)若△ABC的面积为$\frac{1}{2}$,求sinA+sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\frac{1+2i}{z}$=1+i,则|z|=$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

同步练习册答案