精英家教网 > 高中数学 > 题目详情
19.在△ABC中,内角A,B,C的对边分别是a,b,c,则a2-b2=$\sqrt{3}$bc,sinC=$\sqrt{3}$sinB则C=(  )
A.30°B.60°C.120°D.150°

分析 运用正弦定理可得c=$\sqrt{3}$b,代入已知可得a=2b,再由余弦定理可得所求角C.

解答 解:在△ABC中,因为a2-b2=$\sqrt{3}$bc,sinC=$\sqrt{3}$sinB,
由正弦定理可得c=$\sqrt{3}$b,
所以a=2b,
由余弦定理可得cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{4{b}^{2}+{b}^{2}-3{b}^{2}}{2•2b•b}$=$\frac{1}{2}$,
由0°<C<180°,
可得C=60°,
故选:B.

点评 本题考查正弦定理、余弦定理的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.经过两点A(2,3),B(1,4)的直线的斜率为-1,若且点C(a,9)在直线AB上,则
a=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知平行四边形ABCD中,$\overrightarrow{AD}$=$\overrightarrow a$,$\overrightarrow{AB}$=$\overrightarrow b$,M为AB中点,N为BD靠近B的三等分点.
(1)用基底$\overrightarrow a$,$\overrightarrow b$表示向量$\overrightarrow{MC}$,$\overrightarrow{NC}$;
(2)求证:M、N、C三点共线.并证明:CM=3MN.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的前n项和为Sn,且a4=8,a6=12.
(1)求数列{an}的通项公式;
(2)若Sn=20,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=logax(a>0,a≠1).
(1)当a=2时,求关于实数m的不等式f(3m-2)<f(2m+5)的解集.
(2)求使$f(x-\frac{2}{x})={log_a}\frac{7}{2}$成立的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验.甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内(满分100分),并绘制频率分布直方图如右图,两个班人数均为60人,成绩80分及以上为优良.

(1)根据以上信息填好下列2×2联表,并判断出有多大的把握认为学生成绩优良与班级有关?
是否
优良
班级
优良
(人数)
非优良
(人数)
合计
合计
(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率.
P(K2≥k)0.100.050.010
k2.7063.8416.635
(以下临界值及公式仅供参考${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.随着手机使用的不断普及,现在全国各地的中小学生携带手机进入校园已经成为了普遍的现象,也引起了一系列的问题.然而,是堵还是疏,就摆在了我们学校老师的面前.某研究型学习小组调查研究“中学生使用手机对学习的影响”,部分统计数据如下表:
不使用手机使用手机合计
学习成绩优秀人数18725
学习成绩不优秀人数61925
合计242650
参考数据:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$,其中n=a+b+c+d
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
(1)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用手机对学习有影响?
(2)研究小组将该样本中使用手机且成绩优秀的7位同学记为A组,不使用手机且成绩优秀的18位同学记为B组,计划从A组推选的2人和B组推选的3人中,随机挑选两人来分享学习经验.求挑选的两人中一人来自A组、另一人来自B组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若z=1-i,则$\frac{1-z\overline z}{i}$=(  )
A.-iB.iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.求${∫}_{0}^{\frac{π}{2}}$(-2sinx)dx=-2.

查看答案和解析>>

同步练习册答案