精英家教网 > 高中数学 > 题目详情
4.已知$tan(α-β)=\frac{1}{2}$,$tanβ=-\frac{1}{7}$,则tanα等于$\frac{1}{3}$.

分析 由题意利用两角差的正切公式,求得tanα的值.

解答 解:∵已知$tan(α-β)=\frac{1}{2}$,$tanβ=-\frac{1}{7}$,则tanα=tan[(α-β)+β]=$\frac{tan(α-β)+tanβ}{1-tan(α-β)•tanβ}$=$\frac{\frac{1}{2}-\frac{1}{7}}{1-\frac{1}{2}•(-\frac{1}{7})}$=$\frac{1}{3}$,
故答案为:$\frac{1}{3}$.

点评 本题主要考查两角差的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,四边形ABCD是边长为2的正方形,PA⊥平面ABCD,DE∥PA,PA=2DE=AB,F为PC的中点.
(1)求证:EF∥平面ABCD;
(2)求点A到平面PEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.为了判定两个分类变量X和Y是否有关系,应用K2独立性检验法算得K2的观测值为6(所用数据可参考卷首公式列表),则下列说法正确的是(  )
A.在犯错误的概率不超过0.025的前提下认为“X和Y有关系”
B.在犯错误的概率不超过0.025的前提下认为“X和Y没有关系”
C.在犯错误的概率不超过0.010的前提下认为“X和Y有关系”
D.在犯错误的概率不超过0.010的前提下认为“X和Y没有关系”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.现有10道题,期中6道难题,4道简单题,张同学从中任选3道题解答.已知所取3道题中有2道难题,1道简单题.设张同学答对每道难题的概率都是$\frac{2}{5}$,答对每道简单题的概率都是$\frac{4}{5}$,且各题答对与否相互独立,用X表示张同学答对题的个数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A、B、C所对边的长分别为a、b、c,若b=1,A=2B,则$\frac{a}{cosB}$的值等于(  )
A.3B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.经过两点A(2,3),B(1,4)的直线的斜率为-1,若且点C(a,9)在直线AB上,则
a=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:在x∈[1,2]时,不等式x2+ax-2>0恒成立;命题q:函数$f(x)={log_{\frac{1}{3}}}({x^2}-2ax+3a)$是区间[1,+∞)上的减函数.若命题“p或q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,已知斜率为-1的直线l与椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相交于A,B两点,且AB的中点为M(2,1)
(1)求椭圆的离心率;
(2)设椭圆的右焦点为F,且AF•BF=5,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=logax(a>0,a≠1).
(1)当a=2时,求关于实数m的不等式f(3m-2)<f(2m+5)的解集.
(2)求使$f(x-\frac{2}{x})={log_a}\frac{7}{2}$成立的x值.

查看答案和解析>>

同步练习册答案