分析 求出两个命题是真命题时的a的范围,然后求解实数a的范围.
解答 解:∵x∈[1,2]时,不等式x2+ax-2>0恒成立,
∴a>$\frac{{2-{x^2}}}{x}$=$\frac{2}{x}$-x在x∈[1,2]上恒成立,
令g(x)=$\frac{2}{x}$-x,则g(x)在[1,2]上是减函数,
∴g(x)max=g(1)=1,
∴a>1.即若命题p真,则a>1.
又∵函数f(x)=$lo{g}_{\frac{1}{3}}$(x2-2ax+3a)是区间[1,+∞)上的减函数,
∴u(x)=x2-2ax+3a是[1,+∞)上的增函数,且u(x)=x2-2ax+3a>0在[1,+∞)上恒成立,
∴a≤1,u(1)>0,∴-1<a≤1,
即若命题q真,则-1<a≤1.
综上知,若命题“p或q”是真命题,则a>-1.
点评 本题考查命题的判断与应用,复合命题的真假的判断,考查计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=f(x)与y=f(t)表示同一个函数 | |
| B. | y=f(x)与y=f(x+1)不可能是同一函数 | |
| C. | f(x)=1与f(x)=x0表示同一函数 | |
| D. | 定义域和值域都相同的两个函数是同一个函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2100 | B. | 24950 | C. | 25050 | D. | 25151 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com