分析 运用新定义和等差数列的求和公式,可得n的恒等式,由对应项系数相等,可得k=4,d=2c1,即有d=f(c1)=2c1,代入计算即可得到所求值.
解答 解:若数列{cn}是首项为c1,公差为d(d≠0)的等差数列,
且数列{cn}是“和等比数列”,
可得$\frac{{{S_{2n}}}}{S_n}$(n∈N*)是非零常数,
设$\frac{2n{c}_{1}+\frac{1}{2}•2n(2n-1)d}{n{c}_{1}+\frac{1}{2}n(n-1)d}$=k(k≠0),
即有2nc1+n(2n-1)d=knc1+$\frac{1}{2}$kn(n-1)d,
由恒成立思想可得2d=$\frac{1}{2}$kd,2c1-d=kc1-$\frac{1}{2}$kd,
由d不为0,可得k=4,d=2c1,
即有d=f(c1)=2c1,
则f(2017)=2×2017=4034.
故答案为:4034.
点评 本题考查新定义的理解和运用,考查等差数列的求和公式,以及恒成立思想的运用,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在犯错误的概率不超过0.025的前提下认为“X和Y有关系” | |
| B. | 在犯错误的概率不超过0.025的前提下认为“X和Y没有关系” | |
| C. | 在犯错误的概率不超过0.010的前提下认为“X和Y有关系” | |
| D. | 在犯错误的概率不超过0.010的前提下认为“X和Y没有关系” |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com