精英家教网 > 高中数学 > 题目详情
11.一个口袋中装有大小形状完全相同的红色球1个、黄色球2个、蓝色球3个.现进行从口袋中摸球的游戏:摸到红球得1分、摸到黄球得2分、摸到蓝球得3分.从口袋中随机摸出2个球,设ξ表示所摸2球的得分之和,求ξ的分布列和数学期望Eξ.

分析 根据题意知ξ的可能取值,计算对应的概率值,再写出ξ的分布列,计算数学期望值.

解答 解:根据题意,ξ的可能取值为3,4,5,6.
则$P(ξ=3)=\frac{C_1^1C_2^1}{C_6^2}=\frac{2}{15}$,
$P(ξ=4)=\frac{C_1^1C_3^1}{C_6^2}+\frac{C_2^2}{C_6^2}=\frac{4}{15}$,
$P(ξ=5)=\frac{C_2^1C_3^1}{C_6^2}=\frac{2}{5}$,
$P(ξ=6)=\frac{C_3^2}{C_6^2}=\frac{1}{5}$,
所以ξ的分布列为:

ξ3456
P$\frac{2}{15}$$\frac{4}{15}$$\frac{2}{5}$$\frac{1}{5}$
…(8分)
数学期望为$Eξ=3×\frac{2}{15}+4×\frac{4}{15}+5×\frac{2}{5}+6×\frac{1}{5}=\frac{14}{3}$.…(10分)

点评 本题考查了离散型随机变量的分布列与数学期望的计算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.某学校高三年级有两个文科班,三个理科班,现每个班指定1人,对各班的卫生进行检  查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=sin(2x+φ)对一切实数满足f($\frac{π}{6}$-x)=f($\frac{π}{6}$+x),且-π<φ<0,则φ的值是-$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设实数x,y满足(x+3)2+(y-4)2=4,则$\sqrt{{x}^{2}+{y}^{2}}$的最大值是7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设Sn为数列{an}的前n项和,若$\frac{{{S_{2n}}}}{S_n}$(n∈N*)是非零常数,则称数列{an}为“和等比数列”.若数列{cn}是首项为c1,公差为d(d≠0)的等差数列,且数列{cn}是“和等比数列”,记d=f(c1),则f(2017)=4034.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A、B、C的对边分别为a、b、c,且满足b2=ac,cosB=$\frac{3}{4}$.
(1)求$\frac{1}{tanA}$+$\frac{1}{tanC}$的值;
(2)设$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{3}{2}$,求三边a、b、c的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.随机变量X的概率分布规律为P(X=n)=$\frac{a}{n(n+1)}$(n=1,2,3,4,…,10),中a是常数,则P($\frac{1}{2}$<X<$\frac{5}{2}$)的值为(  )
A.$\frac{7}{15}$B.$\frac{3}{5}$C.$\frac{11}{15}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.角A是直角△ABC的一个内角,且$sinA=\frac{7}{8}$,则cosA=$\frac{\sqrt{15}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.二次函数y=x2-2x-2的单调减区间是(  )
A.(1,+∞)B.(-∞,1)C.(0,1)D.(-1,0)

查看答案和解析>>

同步练习册答案