分析 设向量$\overrightarrow e$的坐标为(x,y),利用$\overrightarrow e$与$\overrightarrow a$垂直,$\overrightarrow e$与$\overrightarrow b$的夹角是钝角,得到关于x,y的方程组解之.
解答 解:设向量$\overrightarrow e$的坐标为(x,y),因为$\overrightarrow e$与$\overrightarrow a$垂直,$\overrightarrow e$与$\overrightarrow b$的夹角是钝角,所以$\left\{\begin{array}{l}{x-2y=0}\\{x+y<0}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-\frac{2\sqrt{5}}{5}}\\{y=-\frac{\sqrt{5}}{5}}\end{array}\right.$,
所以设向量$\overrightarrow e$的坐标为($-\frac{2\sqrt{5}}{5},-\frac{\sqrt{5}}{5}$);
故答案为:($-\frac{2\sqrt{5}}{5},-\frac{\sqrt{5}}{5}$);
点评 本题考查了平面向量的坐标运算;设出坐标,借助于方程的思想解答是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com