精英家教网 > 高中数学 > 题目详情
3.已知向量$\overrightarrow a=(1,-2),\overrightarrow b=(1,1),\overrightarrow e$为单位向量,若$\overrightarrow e$与$\overrightarrow a$垂直,$\overrightarrow e$与$\overrightarrow b$的夹角是钝角,则向量$\overrightarrow e$的坐标为($-\frac{2\sqrt{5}}{5},-\frac{\sqrt{5}}{5}$).

分析 设向量$\overrightarrow e$的坐标为(x,y),利用$\overrightarrow e$与$\overrightarrow a$垂直,$\overrightarrow e$与$\overrightarrow b$的夹角是钝角,得到关于x,y的方程组解之.

解答 解:设向量$\overrightarrow e$的坐标为(x,y),因为$\overrightarrow e$与$\overrightarrow a$垂直,$\overrightarrow e$与$\overrightarrow b$的夹角是钝角,所以$\left\{\begin{array}{l}{x-2y=0}\\{x+y<0}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-\frac{2\sqrt{5}}{5}}\\{y=-\frac{\sqrt{5}}{5}}\end{array}\right.$,
所以设向量$\overrightarrow e$的坐标为($-\frac{2\sqrt{5}}{5},-\frac{\sqrt{5}}{5}$);
故答案为:($-\frac{2\sqrt{5}}{5},-\frac{\sqrt{5}}{5}$);

点评 本题考查了平面向量的坐标运算;设出坐标,借助于方程的思想解答是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数y=f(x)满足f(x-1)=2x+3a,且f(a)=7.
(1)求函数f(x)的解析式;
(2)若g(x)=x•f(x)+λf(x)+x在[0,2]上最大值为2,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知二次函数f(x)=ax2+2x+c(a≠0),函数f(x)对于任意的都满足条件f(1+x)=f(1-x).
(1)若函数f(x)的图象与y轴交于点(0,2),求函数f(x)的解析式;
(2)若函数f(x)在区间(0,1)上有零点,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设a>1,函数f(x)=log2(x2+2x+a),x∈[-3,3].
(1)求函数f(x)的单调区间;
(2)若f(x)的最大值为5,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l与圆C:x2+y2+2x-4y+a=0相交于A、B两点,弦AB的中点为M(0,1).
(1)求实数a的取值范围以及直线l的方程;
(2)若圆C上存在动点N使CN=2MN成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一算法的流程图如图所示,则输出S为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数$y=\frac{1}{2}sin(\frac{2}{3}x-\frac{π}{4})$的最大值和最小值及取得最大值最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若a,b∈R,则“a>b>0”是“a2>b2”的(  )
A.必要不充分条件B.充分不必要条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设直线l的参数方程为$\left\{\begin{array}{l}x=2+\frac{{\sqrt{5}}}{5}t\\ y=\frac{{2\sqrt{5}}}{5}t\end{array}\right.$(t为参数),若以直角坐标系xOy的O点为极点,Ox轴为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为ρ=$\frac{8cosθ}{{{{sin}^2}θ}}$.
(1)将曲线C的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;
(2)若直线l与曲线C交于A、B两点,求|AB|.

查看答案和解析>>

同步练习册答案