精英家教网 > 高中数学 > 题目详情
已知函数y=loga(2-ax)在(-1,1)上是x的减函数,则a的取值范围是______.
原函数是由简单函数t=2-ax和y=logat共同复合而成.
∵a>0,∴t=2-ax为定义域上减函数,
而由复合函数法则和题意得到,
y=logat在定义域上为增函数,∴a>1
又函数t=2-ax>0在(-1,1)上恒成立,则2-a≥0即可.
∴a≤2.
综上,1<a≤2,
故答案为(1,2].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=loga(ax2-x)在区间[2,4]上是增函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

7、已知函数y=loga(x+b)的图象如图所示,则a、b的取值范围分别是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(ax2-x)在区间[2,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(x+4)-1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+3=0上,其中m>0,n>0,则
1
m
+
3
n
的最小值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(3a-1)的值恒为正数,则a的取值范围是
1
3
2
3
)∪(1,+∞)
1
3
2
3
)∪(1,+∞)

查看答案和解析>>

同步练习册答案