精英家教网 > 高中数学 > 题目详情
如图四棱柱ABCD-A′B′C′D′的底面是正方形,O是底面的中心,A′O=1,AB=AA′=A′D=A′B=
2

(1)证明:平面A′BD平面B′CD′;
(2)求二面角A-BC-B′的余弦值.
(1)证明:在四棱柱中,
∵BCA′D′,且BC=A′D′,
∴A′BCD′是平行四边形,
∴A′BCD′,
又∵A′B不包含于平面B′CD′,CD′?B′CD′,
∴A′B面B′CD′,
又A′B?面A′BD,A′D?面A′BD,且A′B∩A′D=A′,
∴平面A′BD平面B′CD′.
(2)∵平面ADD′A′平面BCC′B′,
∴二面角A-BC-B′与二面角A′-AD-B互补,
AQ=1,AB=AA=AD=
2

AQ2+OA2=AA'2,A′O2+OB2=A′B2
∴A′O⊥OA,A′O⊥OB,
∴A′O⊥平面ABCD,
∴过O作OM⊥AD于M,连结A′M,
∴A′M⊥AD,∠A′MO为A′-AD-B的平面角,
cos∠A′MO=
OM
AM
=
3
3

∴二面角A-BC-B′的余弦值为-
3
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知在侧棱垂直于底面三棱柱中,,点的中点.

(1)求证:
(2)求证: 
(3)求三棱锥的体积.

 

 
 
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设一个正三棱锥的侧面与底面所成的角为α,相邻两个侧面所成的角为β,那么两个角α和β的三角函数间的关系是(  )
A.2cos2α+3cosβ=1B.2cosα+3cos2β=1
C.3cos2α+2cosβ=1D.3cosα+2cos2β=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是平行四边形,AD=2,AB=1,∠ABC=60°,PA⊥面ABCD,设E为PC中点,点F在线段PD上且PF=2FD.
(Ⅰ)求证:BE平面ACF;
(Ⅱ)设二面角A-CF-D的大小为θ,若|cosθ|=
42
14
,求PA的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知A、B、C三点在球心为O,半径为3的球面上,且几何体O-ABC为正三棱锥,若A、B两点的球面距离为π,则正三棱锥的侧面与底面所成角的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直四棱柱ABCD-A′B′C′D′,四边形ABCD为正方形,AA′=2AB=2,E为棱CC′的中点.
(Ⅰ)求证:A′E⊥平面BDE;
(Ⅱ)设F为AD中点,G为棱BB′上一点,且BG=
1
4
BB′
,求证:FG平面BDE;
(Ⅲ)在(Ⅱ)的条件下求二面角G-DE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知轴对称平面五边形ADCEF(如图1),BC为对称轴,AD⊥CD,AD=AB=1,CD=BC=
3
,将此图形沿BC折叠成直二面角,连接AF、DE得到几何体(如图2).
(1)证明:AF平面DEC;
(2)求二面角E-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,正三棱锥中,分别是 的中点,上任意一点,则直线所成的角的大小是    (     )
A.B.C.D.随点的变化而变化.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图是正方体的展开图,则在这个正方体中:

①BM与ED平行;
②CN与BE是异面直线;
③CN与BM成60°角;
④DM与BN垂直.
以上四个命题中,正确命题的序号是(  )
A.①②③B.②④C.③④D.②③④

查看答案和解析>>

同步练习册答案