精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD的底面ABCD是平行四边形,AD=2,AB=1,∠ABC=60°,PA⊥面ABCD,设E为PC中点,点F在线段PD上且PF=2FD.
(Ⅰ)求证:BE平面ACF;
(Ⅱ)设二面角A-CF-D的大小为θ,若|cosθ|=
42
14
,求PA的长.
(Ⅰ)证明:∵由AD=2,AB=1,ABCD是平行四边形,∠ABC=60°,
∴AC=
4+1-2×2×1×cos60°
=
3

∴AB⊥AC.
又∵PA⊥面ABCD,∴以AB,AC,AP分别为x,y,z轴建立坐标系.
则A(0,0,0),B(1,0,0),C(0,
3
,0),D(-1,
3
,0),
设P(0,0,c),则E(0,
3
2
c
2
)

设F(x,y,z),∵PF=2FD,
PF
=2
FD
,即:(x,y,z-c)=2(-1-x,
3
-y,-z)

解得:x=-
2
3
y=
2
3
3
z=
c
3

F(-
2
3
2
3
3
c
3
)
.…..(5分)
AF
=(-
2
3
2
3
3
c
3
)
AC
=(0,
3
,0)
BE
=(-1,
3
2
c
2
)

设面ACF的法向量为
n
=(x,y,z)

-
2
3
x+
2
3
3
y+
c
3
z=0
y=0
,取
n
=(c,0,2)

因为
n
BE
=-c+c=0
,且BE?面ACF,
∴BE平面ACF.…..(9分)
(Ⅱ)设面PCD法向量为
m
=(x,y,z)

PC
=(0,
3
,-c)
PD
=(-1,
3
,-c)

3
y-cz=0
-x+
3
y-cz=0
,取
m
=(0,c,
3
)
.…..(11分)
|cosθ|=|
n
m
|
n
||
m
|
|=
42
14
,得
2
3
c2+4
c2+3
=
42
14

整理,得c4+7c2-44=0,解得c=2,
∴PA=2.…..(15分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,△PAD为等边三角形,平面PAD⊥平面ABCD,且∠DAB=60°,AB=2,E为AD的中点.

(1)求证:AD⊥PB;
(2)求点E到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

把边长为a的正△ABC沿高线AD折成60°的二面角,这时A到边BC的距离是(  )
A.
15
4
a
B.
6
3
a
C.
13
4
a
D.
3
2
a

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知ACDE是直角梯形,且EDAC,平面ACDE⊥平面ABC,∠BAC=∠ACD=90°,AB=AC=AE=2,ED=
1
2
AB
,P是BC的中点.
(Ⅰ)求证:DP平面EAB;
(Ⅱ)求平面EBD与平面ABC所成锐二面角大小的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△ABC中,AC=BC=2,∠ACB=120°,D为AB的中点,E,F分别在线段AC,BC上,且EFAB,EF交CD于G,把△ADC沿CD折起,如图所示,

(1)求证:E1F平面A1BD;
(2)当二面角A1-CD-B为直二面角时,是否存在点F,使得直线A1F与平面BCD所成的角为60°,若存在求CF的长,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以等腰直角三角形ABC斜边BC上的高AD为折痕,将△ABC折成二面角C-AD-B等于______时,在折成的图形中,△ABC为等边三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知几何体A-BCED的三视图如图所示,其中侧视图和俯视图都是腰长为4的等腰直角三角形,正视图为直角梯形.求:
(1)异面直线DE与AB所成角的余弦值;
(2)二面角A-ED-B的正弦值;
(3)此几何体的体积V的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正三棱锥的相邻两侧面所成的角为α,则α的取值范围(  )
A.(
π
2
,π)
B.(
π
3
,π)
C.(
π
4
π
3
D.(
π
3
π
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图四棱柱ABCD-A′B′C′D′的底面是正方形,O是底面的中心,A′O=1,AB=AA′=A′D=A′B=
2

(1)证明:平面A′BD平面B′CD′;
(2)求二面角A-BC-B′的余弦值.

查看答案和解析>>

同步练习册答案